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1. INTRODUCTION 

This paper describes statistical methods based on the linear model in the context of applications 
to World Fertility Survey data. The common aim of all the methods presented is to relate the 
mean level of a quantitative variable Y to a set of other variables x1, ... , Xk measured in the 
survey. For example, Y may be a measure of fertility, such as the number of children ever born 
or births in the five years prior to the interview, or a measure of contraceptive use such as 
current use of a method. The variables x1 , ... , Xk may be demographic controls such as age at 
interview or age at first marriage, or socioeconomic factors such as level of education, type 
of place of residence or ethnic group. The term model in the title means that the analysis is 
based on the imposition of a simplifying pattern or structure relating Y to the X's. The term 
linear relates to the fact that the equation defining the model is linear in the unknown para
meters, a technical point that will be elucidated later. In practice a number of common statist
ical techniques are based on linear models, including direct standardization, multiple classifi
cation analysis, analysis of variance, analysis of covariance and linear regression, and these will 
be the principal subjects of the paper. 

The linear model can also be described as the linear regression model. Although the term regres
sion is sometimes limited to cases where the X's are interval-scaled, it can also be regarded as a 
generic term describing the whole family of methods. The technical justification of this view
point is delayed until chapter 5, but from the outset we use the terminology of regression to 
describe the variables. Thus Y is called the regfJ!§~(l.nd variable (or simply the regressand) and 
the X's are called regres~Qr~yariables (or simply regre;sc;rs). Alternative terms for the regressand 
in the literature fnClude the !~$Q(}nse variable and the depend~nt variable; alternative terms for 
regressors include predictor variables, independent variables and explanatory variables. Regres
sand and regressor are used here despite the initial difficulty of remembering which is which, 
because the other terms have potentially misleading implications. 

Two types of regressors will also be distinguished. In the first part of the bulletin we shall be 
concerned with regressors which are categorical variables. Interval-scaled variables such as age 
are grouped into a relatively small number of categories, and the ordering between the cate
gories is ignored. We described categorial regressors as factors. later in the paper we shall treat 
interval-scaled regressors without grouping them into categories. The term covariates is reserved 
for regressors treated in this way. This terminology is not entirely satisfactory, but it is never
theless convenient. 

The basic strategy of the methods can be described as follows. Let us suppose we have N 
individuals in the sample, and let the suffix i denote the ith individual in the sample. Then the 
observed values of the regressand Y are 

Y
1

, Y
2

, ... , YN, or {Yi:i=l to N}. 

In an illustrative example used throughout the text, Y is the variable Number of Children Ever 
Born, also called simply parity, for a sample of N = 6810 ever-married women from the Sri 
Lanka Fertility Survey. Thus Yi is the number of children ever born to the ith individual in the 
sample. 

For simplicity we assume for the moment that the individuals in the sample are "represen
tative" of the population, in the sense that they were selected by probability sampling and 
each individual in the population had an equal chance of being selected. In other words, we 
assume a self-weighted probability sample. In fact for the Sri Lanka case this assumption is not 
valid, since certain areas were sampled more heavily than others. For the analysis given here, 
individuals were assigned weights which are (a) inversely proportional to the probability of se
lection, and (b) normalized so that they sum to the number of observations in the sample. 

The firg step in an analysis is to estimate the mean value of Y for th!_population by the sample 
mean, Y. For example, the mean parity for the Sri Lanka sa!11ple is Y = 3.94 children. If all the 
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women in the sample had the same value, Y, then this would be an adquate description of the 
data. In practice of course the values of Yvary among women in the sample. It is convenient to 
decompose each value of Y into the mean and the deviation from the mean, that is, 

(1.1) 

Then the deviations Yi · Y represent fluctuations in the values of Y about the mean. The 
basic intent of the analysis is not to explain the average level of Yin the poulation. Rather we 
attempt to discover patterns or structure in the set of deviations (Y · Y). That is, we attempt to 
"explain" the differences in the values of Y between individuals in terms of other variableS' 
measured in the survey. 

It is not feasible to look at all the deviations in the sample, because of the large number of 
individuals in the sample. A powerful technique is to cross classify the mean values of Y by the 
factors expected to influence the deviations. For example, in the Sri Lanka example we may 
cross-classify the mean parities by demographic variables such as marital duration and age at 
marriage, socioeconomic variables such as education level, or geographical indicators such as 
urban-rural residence or region. The analysis of cross-tabulated means in the subject of the first 
two chapters of the text. Later more flexible methods for analyzing patterns in the deviations 
based on linear regression are considered. 

Each analysis has an associated decomposition of the observed values Y into fitted values, 
representing the simplified structure imposed on the data and residuals, the deviations of the 
observed values from the fitted values, representing unexplained variation in the data. That is, 

observed = fit + residual. (1.2) 

Thus in (1.1), the fitted values are all equal to the sample mean, and the residuals are the 
deviations from the mean. In a 1-way cross-tabulation, the fitted values are the means within 
each level of the cross-classifying factor, and the residuals are the deviations of the individual 
values in each category from the mean for that category. At the other extreme, the observed 
values are equal to the fitted values and the residuals are all zero. 

In general, as more factors are included to account for the variations in the dependent variable, 
the "fit" component becomes more elaborate and the residual component has correspondingly 
less structure. One of the aims of the analysis is to find a model for the Y values which is a par
simonious description of the data and which leaves residuals which are relatively free of explain
able patterns. 

This general procedure should become clearer when applied to a specific set of analysis. We 
begin with the simplest, a one way cross-classification of means. 
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2. CROSS-TABULATION AND 
DIRECT STANDARDIZATION 

2.1 Introduction 

In this chapter we review some of the basic ideas underlying the analysis of cross-tabulations of 
means and sample sizes. These are analysed with the aid of the method of direct standard
ization, a simple technique for controlling categorical predictors which is familiar to most 
demographers. This method provides a convenient introduction to the statistical methods which 
are the principal subjects of this document. 

2.2 One-Way Cross-Classifications 

We begin with the simplest data structure, consisting of a single regressand variable Y and a 
single categorical regressor (or factor) X. For illustrative purpose we shall refer to the problem 
of assessing the relationship between education and fertility from a fertility survey of ever
married women. The first step in the process is taken in the following example. 

Example 2.1 Data from the Sri Lanka Fertility Survey of 6810 women are available on the 
following variables: 

Y = Number of Children Ever Born, otherwise called simply Parity. 

X = Respondent's Educational level (LVED), with four categories: 

LVED= 1 : No schooling 
2 : 0-5 Years schooling 
3 : 6-9 Years schooling 
4 : 10 or more years schooling 

The full data consists of the distribution of parities within each educational level. However, we 
suppose that interest is confined to a comparison of average parities, and hence we reduce the 
data to a one way cross-classification of the mean parity Yj for each educational level j, together 
with the sample sizes. This one way cross-classification is presented in (Table 2.1.a). 

The mean parity for the 6810 women in the sample is 3.94. There are large differentials in 
mean parity by educational level, ranging from 2.30 for the higher educated group to 5 .17 for 
the group with no education. 

The effects of a categorical regressor X on a response Y consist of the differences in the mean 
of Y between categories of X. 

There is no unique way of representing the effects of a categorical regressor; four common 
forms are shown in Table 2.1.c). The first alternative is to present all the pairwise differences 
between the category means in a triangle. This form has the merit a symmetry, but it is redun
dant since given any three pairwise differences involving all four categories the others can b.e 
calculated by addition or subtraction. The second and third methods of presentation express 
effects as deviations from the weighted and unweighted sample means. Note that the weighted 
mean depends on the distribution of the sample over the categories, and hence the effects 
expressed as deviations from the weighted mean are also sensitive to this distribution. This is 
not entirely satisfactory when comparing the effects of X for two populations with different 
distributions of X. In the final form of presentation in Table 2.1.c), effects are calculated as 
deviations from the mean of one category, the so-called reference category, here chosen as the 
group with no schooling. 

Note that all alternatives give the same information about the effects of X, and we shall use 
them interchangeably according to convenience. 
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TABLE 2.1: Effects of a Variable from a One-Way Classification: Mean Number of Children 
Ever Born, by Respondent's Level of Education 

a) Means 
b) Sample Sizes 
c) Effects of Education 

1. Expressed as Pairwise Differences: 
None 

Educational Primary 
Level Secondary 

Higher 
2. Expressed as Deviations from the 

Sample Mean (3.94) 
3. Expressed as Deviations from the 

Unweighted Mean (3.74) 
4. Expressed as Deviations from 

Reference Category: No schooling 

Source: Sri Lanka Fertility Survey 1975. 

No 
Schooling 

5.17 
1512 

-0.93 
-1.91 
-2.87 

1.23 

1.43 

Educational Level 

1-5 6-9 10 or Mean 
Years Years More Years 

4.24 3.26 2.30 3.94 
2686 1704 908 

-0.98 
-1.94 -0.96 

0.30 -0.69 -1.64 

0.50 -0.49 -1.44 

-0.93 -1.91 -2.87 

The term "effect" as applied here has potential dangers, since it carries an unwarranted causal 
connotation. It is tempting to conclude from the one way cross-classification that the "effect" 
of secondary education has been to reduce mean parity, from 5 .17 to 3 .26. However, such an 
interpretation is clearly invalid, since the· difference could be attributed to compositional 
effects of other factors correlated with education but unconnected with the educational pro
cess. The most easily recognisable of these are demographic factors such as age apd age at 
marriage. Specifically, in developing countries more educated women tend to be younger and to 
marry later than average, and hence in a cross-sectional survey have had below average exposure 
to the risk of child-bearing. Thus the differentials in mean parity by educational level may be 
attributed to differentials in the distribution of marital duration between the education groups. 
These considerations lead naturally to higher way cross-tabulations which are the subjects of 
the next subsection. 

2.3 Two-Way Cross-Classifications 

We have noted that the effect of education in the one way classification of mean parities may 
be attributed to compositional effects of marital duration. To investigate this we cross-classify 
mean parity by Educational Level and Marital Duration. Table Dl * displays the results of a 
cross-classification of Mean Parity by Educational Level and Years Since First Marriage in six 
categories (MGP6) 

MGP6 1 = 0 · 4 years 
2 = 5 · 9 years 
3 = 10 -14 years 
4 = 15 -19 years 
5 = 20 -24 years 
6 = 25+ years 

* Tables of raw data are labelled D and appear after the text. 
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The first entry in each cell is the mean, the second entry is the sample count, and the third 
entry is the sample standard deviation. 

2.3.1 Interaction and Association 

Table Dl illustrates two important concepts relating to two way and higher way cross-classifi
cations of means, namely, interaction and association. The term interaction refers to the first 
entries in the cells of Table D 1, the Cell means. Two cross-classifying factors A & B are said to 
interact in their effect on a response if the effects of one factor vary according to the levels of 
the other factor. If there is no interaction, that is the effects of one factor are the same for all 
levels of the other factor, then the effects of A & B on the response are said to be additive.* 
We denote this additive structure by the symbol [A+ B]. 

It will be useful for later developments to express the additive structure in symbols. Suppose 
that A has J levels and B has K levels. Let µjk and njk denote the mean and sample size for the 
cell with levels A= j and B - k of the factors, for j = 1 to J, k = 1 to K. The effects of A and B 
are additive if and only if the means µjk can be written in the form 

µjk = m + rj +ck, j = 1 to J; k = 1 to K, (2.1) 

where mis a constant, {rr j = 1 to J} are quantities defined for each level of j of the row 
factor A, and {ck: k = 1 to K} are quantities defined for each level k of the column factor B. 

To verify this equivalence, note that the effects of B within level j of A, expressed as deviations 
from the first category of B, can be written as 

µjk - µj 1, k = 2 to K. 

Substituting the right hand side of equation (2.1 ), we obtain 

µjk-µjl = (µ+rj+ck)-(µ+rj+c1) 

= ck - cl . 

Now ck - c1 does not involve the row subscript j, and hence is the same for all levels of A. In 
other words, the effects of B within levels of A are the same for all levels of A, which is the 
definition of additivity. 

The terms on the right hand side of equation (2.1) are not unique, in that different sets of m, 
{ rj } and {ck} give the same set of means {µjkl . For example, if we add a constant 2d to m, 
anu subtract d from all the values {rj} and {ck} , we obtain the same means: That is, if we 
define 

m* = m+2d 'rr = rrd 'ck = ck-d ' 

then m* + rj +ck = (m+2d) + (rrd) + (ck-d) = m+rj+ck = µjk. 

Thus restrictions are required to define the values m, {rj} and {ck} uniquely. There are two 
common choices, corresponding to the definition of m as the mean of the first cell of the 
table, or as the overall (weighted) mean of the table. In the first case, we set m = µ 11 in equa
tion (2.1) and obtain 

µjk = µ11 + rj + ck , j = 1 to J; k = 1 to K . (2.2) 

Setting j = k = 1 in this equation, we have 

* 

µ11 = µ11 + rl +cl ' 

Strictly speaking, the definition of additivity is related to the scale of measurement. This definition 
corresponds to additivity on the linear scale, or linear additivity. Other scales are discussed in section 
3.5. 
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FIGURE 2.1: Plots of Mean Parity by Marital Duration and by Level of Education 

a) Observed Means: Table Dl 

No School 

1--5 Years 
6-9 Years 

10 or more 

b) Additive Effects: Table 2.2 

No School 
1-5 Years 
6-9 Years 
10 or more 

0-4 5-9 10-14 15-19 20-24 25+ 0-4 5-9 10-14 15-19 20-24 25+ 

Years Since First Marriage Years Since First Marriage 

TABLE 2.2: Fitted Mean Parities from Additive Model 

Variable averaged ... NCEB. 

Lved 

Fitted No 1-5 6-9 10 or 
Mgp6 Mean Schooling Years Years More Years Total 

Count (1) (2) (3) (4) 

0-4 1.31 1.07 0.86 0.71 .92 
112 376 442 351 1280 

5-9 2 3.78 2.54 2.33 2.18 2.44 
172 442 362 255 1231 

10-14 3 4.06 3.82 3.61 3.46 3.76 
197 482 293 145 1118 

15-19 4 5.11 4.87 4.66 4.51 4.83 
239 461 262 95 1057 

20-24 5 6.01 5.77 5.56 5.41 5.78 
292 377 184 40 893 

25 + 6 6.82 6.58 6.37 5.22 6.64 
501 548 161 22 1231 

Total 5.16 4.24 3.26 2.30 3.94 
1512 2686 1704 908 6810 
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and hence the quantities {rj} and {cJare defined so that the first row and column effects are 
zero, that is 

(2.3) 

We have already noted that {ck - c1} represent the effects of B within levels of A, expressed as 
deviations from the first category of B. Thus if m is defined as in (2.2), c1 = 0 and {ciJ have this 
definition. Similarly {rj} represent the effects of A within levels of B, expressed as deviations 
from the first category of A. 

If we set m = ii, the overall weighted mean of µjk' we obtain the alternative form 

µjk = ii+ rj + ck , j = 1 to J ; k = 1 to K , (2.4) 

and then it is easy to show that {r·} and {ck} can be restricted so that they average to zero 
over their respective marginal distri6utions of counts in the sample. That is, if {ni+ ; j = 1 to J} 
is the marginal distribution of factor A and {n+k; k = 1 to K} is the marginal aistribution of 
factor B, then 

J 
~ 

j=l 

K 
~ 

k=l 
= 0. (2.5) 

In this case, the quantities {rj} and {ck} still represent the effects of one factor within levels of 
the other factor, but now the effects are expressed as deviations from the overall mean. 

For the data in Table Dl, the effects of education on parity are not the same for all levels of 
marital duration. For example, the difference in ntean parities between LVED = 1 and LVED = 
4 is .96-.92 = 0.04 of MGP6 = 1 and 6.92-5 .97 = 0.95 for MGP6 = 6. Table 2.2 presents hypo
thetical data where the effects are additive. For example, the difference in mean parities be
tween LVED = 1 and LVED = 4 is 0.60 for all levels of marital duration. A visual check on 
additivity can be obtained by plotting the cell means and joining the means of one factor for 
each level of the other factor, as in Figure 2.1. If the effects are additive, as in Table 2.2, the 
result is a set of parallel piecewise linear curves (Figure 2.1.b ). Deviations from parallel lines 
indicate interactions (Figure 2.1.a). 

The term association refers to the second entries in the cells of Table D 1, the cell counts or 
sample sizes. These reflect the joint distribution of the classifying factors in the sample. Two 
cross-classifying factors are associated if the distribution of one factor varies according to the 
level of the other factor. If there is no association, that is the distribution of one factor is the 
same for all levels of the other factor, then the two factors are said to be independently dis
tributed, or orthogonal. 

For the data in Table Dl it is clear that MGP6 and LVED are associated. The distribution of 
education is not the same for all levels of marital duration, and reflects the historical increase 
in education between marriage cohorts. For example, 27 per cent of the cohort married less 
than five years have 10 or more years of education, compared with 2 per cent for women 
married 25 or more years. 

The concepts of interaction and association should be carefully distinguished. Confusion often 
arises from variations in terminology. The term interaction is sometimes used in both con
texts. Also, the term independence is occasionally used to refer to what is described here as 
additivity. 

2.3.2 Direct Standardization 

We now concentrate on the variable educational level. The penultimate row of Table Dl gives 
the one-way cross-classification of mean parities di.scussed in the previous section, unadjusted 
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TABLE 2.3: Effects of Education from Table Dl Expressed as Deviations from The Reference 
Category, No Schooling 

a) Unadjusted 

b) Duration-Specific 
Effects 

Marriage 
Duration 

0-4 
5-9 

10-14 
15-19 
20-24 
25 + 

c) Adjusted for MGP6 by 
test factor standardization 

No 
Schooling 

Educational Level 

1-5 
Years 

-0.93 

-0.08 
-0.08 
-0.04 
-0.16 
-0.35 
-0.37 

-0.16 

6-9 
Years 

-1.91 

-0.01 
-0.15 
-0.14 
-0.52 
-1.00 
-0.69 

-0.39 

10 or 
More Years 

-2.87 

-0.04 
-0.15 
-0.73 
-1.00 
-1.75 
-0.95 

-0.71 

for marital duration. These are weighted averages of the means in each column, with weights 
given by the distribution of MGP6 for each level of L VED. Since the factors are associated, the 
set of weights varies between the columns. We can adjust for the different composition of 
marital duration of each educational group by averaging the means in each column with the 
same set of weights. This technique is known as direct standardization. The choice of weights, 
or the. standard distribution, is somewhat arbitrary. A simple choice is to give equal weights to 
each cell, obtaining the unweighted column means. Alternatively, we may weight proportional 
to the distribution of the adjusted factor (MGP6) in the whole sample, a variant of the method 
known as Test Factor Standardization. Other choices are also possible. 

In symbols, direct standardization involves calculating the standardized column means 

Yk = ~ WjYJk' 
J 

where the summation is over the row j, Yjk is the mean for row j and column k, and Wj is the 
weight for row j. 

Test factor standardization can be applied to the data in Table D 1, giving the standardized 
education means· in the last row of the table. These are interpreted as the predicted mean 
parities for each level of education if women in that category had the distribution of marital 
duration in the entire sample. 

Effects of education, adjusted for marital duration, are obtained from the standardized means 
by subtraction. They are displayed in row c) of Table 2.3, in the form of deviations from the 
standardized mean for the reference category NO SCHOOLING. Row a) of Table 2.3 gives the 
unadjusted effects of education as in the last row of Table 2.1, and the next six rows of the 
table give the effects of education calculated separately within_ each marriage duration 
Table 2.4 gives the corresponding estimates for the artificial data in Table 2.2. 

We can use these tables to illustrate the consequences of association and interaction on the 
effects in a two-way table. Firstly, note that for both tables, additive and non-additive, the 
adjusted effects in row c) in Tables 2.3 and 2.4 are different from the unadjusted effects in row 
a); in fact here the adjusted effects are considerably smaller, although in other examples they 
may be larger. This impact of adjustment occurs because the factors are associated. Turning 
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TABLE 2.4: Effects of Education from Table 2.2 Expressed as Deviations from the Reference 
Category, No Schooling 

Educational Level 

No 1-5 6-9 10 or 
Schooling Years Years More Years 

a) Unadjusted -0.92 -1.90 -2.86 

b) Duration-Specific 
Effects 

0-4 -0.24 -0.45 -0.60 
5-9 -0.24 -0.45 -0.60 

Marriage 10-14 -0.24 -0.45 -0.60 
Duration 15-19 -0.24 -0.45 -0.60 

20-24 -0.24 -0.45 -0.60 
25 + -0.24 -0.45 -0.60 

c) Adjusted for MGP6 by -0.24 -0.45 -0.60 
test factor standardization 

this statement round, we obtain the following property: Property 1: If the factors A and Bare 
independent (that is, not associated}, then the unadjusted and adjusted effects of either factor 
are equal. This property is hardly surprising, since the point of standardization is to deal with 
the consequences of association on the unadjusted effects. 

The second property concerns the effects in rows b) and c) and the consequence of interaction. 
It can readily be shown that the adjusted effects in row c) can be obtained by averaging the 
duration specific effects in row b) with respect to the standard distribution. For example, the 
adjusted effect for the 1-5 years category in Table 2.3 is 

-0.16 = [(-.08) (1280)+(-.08) (1231)+(-.04) (1118)+(-.16) (1051)+ 

(-.35) (893)+(-.37) (1231)] /6810 

This property holds for any two-way table: 

Property 2: The effects of B adjusted for A by standardization are weighted averages of the 
effects of B within each level of A, with weights given by the standard distribution. 

In the presence of interaction, the effects of B vary according to the level of A, as seen in Table 
2.3. Hence Property 2 implies that the adjusted effects vary according to the choice of standard 
distribution. On the other hand, if the effects are additive, as in Table 2.4, the effects of Bare 
the same within each level of A, and the adjusted effects are obtained by averaging values which 
are all equal. Hence this averaging clearly is not affected by the choice of weights, that is, the 
standard distribution. Thus we obtain Property 3: If A and B are additive (that is, do not 
interact in their effects on Y) then the adjusted effects of B equal the effects of B within any 
level of A, for any choice of standard distribution. 

We can prove Property 2 with a little algebra. Let µjk be the mean for the cell with level j of 
factor A and level k of factor B. Then adjusting the means of B for factor A by standardization 
consists in choosing a standard distribution of factor A, 

{ wj : j = 1, ... , J} (2.6) 

and averaging the means of A within each level of Busing these weights; that is, forming 

15 



J 
jlk (w) = 2: WJ· µJ.k. (2.7) 

j=l 
The argument (w) is used to emphasize the dependence of the adjusted mean on the choice of 
standard. The adjusted effects of B, expressed as deviations from the reference category k = 1, 
are given by 

{ J.i'k (w) - /:l'1 (w) : k = 2, ... , K} 

Substituting equation (2.7), we obtain 
J J 
l; WJ· µJ.k - l; WJ· µj' l 

j=l j=l 

J 
l; WJ· (µJ.k - µJ. l) ' 

j=l 

which is an average of effects of B within levels of A with weights wj' This proves Property 2. 

Now suppose that the effects of A and B are additive. Then we showed above that the means 
µjk can be written as 

and {ck} represent the effects of B within any level of A. Hence by Property 3, they also 
represent the effects of B adjusted for A, for any choice of standard. Thus if an additive table 
of means with factors A, B is expressed in the form (2.1), then {rj} are the effects of A adjust
ed for B and {c,J are the effects of B adjusted for A. Furthermore, if the constant term mis 
defined as µ JJ, as in equation (2.2), then the effects are expressed as deviations from the first 
category. If m is defined as the overall mean, as in equation (2.4 ), the effects are expressed as 
deviations from the overall mean. 

Some authors argue that standardization is an appropriate method of summary only if the 
effects are approximately additive. If large interactions are present, the adjusted effects depend 
on the choice of standard, and the summarization of the effects within levels of the other 
facto! involves a loss of information. In the present example, for instance, the degree of inter
action is considerable, as evidenced in Table 2.3.b ). Substantively speaking, the educational 
differentials are small for the first two marriage cohorts. Reduced fertility of women with 10 
or more years of education emerges in the third marriage cohort and persists thereafter. The 
differentials between the other education groups emerges only for the last three marriage 
cohorts. All this information is lost if the adjusted effects of education are summarized by the 
single row of Table 2.3.c). 

Despite this loss of information, standardization still illustrates an essential feature of the data 
with or without the presence of interactions. The comparison of unadjusted and adjusted 
effects demonstrates clearly the compositional effect of marriage duration on the average 
education differentials. Specifically the differentials by educational level are greatly reduced 
when marriage duration is controlled. 

To summarize, if the cross-classifying factors are independent then rows a) and c) are equal. If 
the effects of the cross-classifying factors are additive, then rows b) and c) are equal; otherwise 
the rows of b) are different and row c) is a weighted average, which varies according to the 
choice of standard. 

2.4 Three-Way Cross-Classifications 

The concepts and methods of the previous section can be readily extended to three-way cross
classifications. As an example, we analyze the table resulting from replacing the single demo
graphic control marital duration in Table Dl by the two demographic controls respondent's 
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age and respondent's age at first marriage. Table D2 gives the cross-classification of Mean 
Parity by Educational Level, Current Age (AGP5) in five groups: 

AGPS: 1 = 15-24years 
2 = 25-29 years 
3 = 30-34 years 
4 = 35-39 years 
5 40-49 years 

and Age at First Marriage (AMGP) in four groups: 

AMGP: 1 < 15 years 
2 = 15-19years 
3 = 20-24 years 
4 = 25 + years 

The definitions of independence and additivity in the two way table were unambiguous, but for 
the three way table various extensions are possible. Suppose we denote the three variables of 
the cross-classification by A, B and C. One possibility is to view the three way table as a set of 
two way tables, one for each level of one of the factors. For example we might consider the 
set of two way tables of B and C for each level of A. Then we apply definitions of additivity 
and independence

1 
to this set of two way tables. Thus, Band Care conditionally additive given 

A if the effects of B and C are additive for all these two way tables. That is, within each level of 
A, the effects of C are the same for all levels of B. This structure is denoted by [ A(B+C)] or 
alternatively [AB +AC]. 

A second form of additivity is obtained by combining two of the three variables, say A and B, 
into a single joint variable (AB) consisting of all combinations of levels of A and B. Then the 
three way table of means can be considered as a single two way cross-classification by (AB) 
and C. The definitions of the previous section can be applied to this table. Thus (AB) and Care 
additive in their effect on the response if the effects of C are the same for all levels of the joint 
variable AB. This structure is denoted by [AB+ C]. For example Table D2 might be regarded as 
a two-way cross-classification of mean parity by C = LVED and AB = (AGP5. AMGP), the 
variable consisting of all combinations of AGP5 and AMGP, with 5 x 4 levels. Additivity in this 
two-way table, denoted by [LVED+AGP5.AMGP], means that the effects of education are the 
same for all levels of Age and Age at Marriage, an implausible structure for the present data. 
The structure [AB+C] does not make any assumptions about the pattern of means cross
classified by A and B within each level of C. If we assume in addition that the effects of A and 
B are conditionally additive given C, then we obtain a stronger form of additivity. We say that 
the effects of A, B and C are additive on the response, and denote this structure by [A+B+C]. 

Examples of the patterns [A (B+C)], [AB+C] and' [A+B+C] are given in Table 2.5, for a 
2x2x2 table. The patterns can also be expressed in symbols. Let µjkl be the mean response for 
level A = j, B = k, and C = l of the cross-classifying variables. The three structures [A (B+C)] 
[AB+C] and [A+B+C] correspond to the following forms for the cell means: 

[A (B+C)] µjk~ mj + cjk + sjR for all j, k and .l 
[AB+C] µjk£ m+cjk+s1 forallj,kandJ. 

[A+B+C] µjkl m + rj +ck+ s.! for all j, k and .l 

(2.2) 

(2.3) 

(2.4) 

To illustrate the correspondence, consider the difference in means between levels t and f of 
variable C, for A = j and B = k. 

Equation (2.2) gives 

µjk~ - µjke' = mj + cjk + sj£ -(mj + cjk + sjf) = sja - sj!' 

and hence this difference depends on the level of A, j, but not on the level of B, k. Hence the 
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TABLE 2.5: Examples of Additive Data Patterns for a 2x2x2 Table of Means 

a) [A(B+C)] Band C conditionally additive given A 

b) 

A B 

1 1 
1 2 

2 1 
2 2 

[A B+C] AB and C additive 

A 

2 
2 

B 

1 
2 

1 
2 

c 
2 

5 8 
7 10 

9 10 
8 9 

c 
2 

5 8 
7 10 

9 12 
8 11 

c) [A+B+C] A, Band C additive 

A 

2 
2 

B 

1 
2 

1 
2 

5 
7 

9 
11 

c 
2 

8 
10 

12 
14 

effects of B and C within each level of A are additive, as required by the model [A(B+C)]. 

Equations (2.3) and (2.4) both give 

µjk2 . µjk.( = St . s{ 

which implies that the effect of C is the same for all levels of A and B. However equation (2.4) 
also gives 

which implies that the effects of A and B are also additive. This additional property is not 
shared by equation (2.3). There is clearly a hierarchy between the three data patterns, in that 
[A+B+C] implies [AB+C] and [AB+C] implies [A(B+C)] .* 
The concept of association between the cell counts generalizes to the three way table in much 
the same way as that of additivity between the cell means. Thus B and C are conditionally 
independent given A if the distribution of B and C are independent within each level of A. The 

* Other patterns exist for a three-way table. The variables A, B, and C can be permuted. One or more 
effects can be assumed equal to zero, leading to one or two way tabulations by summing over factors. 
Finally one model (AB +BC+cA], cannot be described in terms of two way tables. A full description 
of these models is g·iven in another technical bulletin (Little, 1978). 
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TABLE 2.6: Distribution of Sample, by Age and by Age at Marriage 

AMGP 

AGP5 <15 15-19 20-24 

15-24 114 688 285 
25-29 165 474 520 
30--34 175 502 305 
35-39 199 455 331 
40-49 330 873 489 

TABLE 2.7: Standardization on Age and on Age at Marriage 

Mean Parity 
Standardized for 
AGP5 and AMGP 

Effects of 
Education 

No 
Schooling 

4.13 

Educational Level 

0-5 
Years 

3.96 

-0.17 

6-9 
Years 

3.78 

-0.35 

25 + 

0 
138 
240 
218 
310 

10 or 
More Years 

3.10 

-1.03 

joint variable AB and the variable C are independent if the distribution of C is the same for all 
levels of the joint factor AB. Finally, A, B and C are independently distributed if AB and C are 
independent and A and B are conditionally independent given C. These structures are important 
in the analysis of contingency tables, but are not considered in detail in the present context. 

The method of direct standardization can be applied to calculate the effects of one factor, 
adjusted for the other two. For our example we are interested in calculating education effects 
adjusted for age and age at marriage. We shall once again use test factor standardization, apply
ing the distribution of AGP5 and AMGP for the whole sample, given in Table 2.6, to the set of 
means for each educational level. 

The present application illustrates a practical problem of the method which also has analytical 
consequences. The distribution of the sample over the cells of the three way table is not uni
form, and some cells are empty. The four cells with AGP5 = 15-24 and AMGP = 25 + are empty 
because they are unobservable. Also two cells with LVED = 4, and AMGP = 1 are empty, 
because very few women with 10 or more years of education were married before age 15. In 
applying the standard in Table 2.6 to the data in Table D2, means are not required for the un
observable cells since they are given weight zero; however means are required for the empty 
cells with LVED = 4, AMGP = 1, since they are given positive weight in the standardized mean. 
Here the present values for the adjacent group with AMGP = 2 were imputed for these cells. 
This procedure introduces a small bias into the final estimates. More generally, the method of 
standardization can give unduly large weights to cell means which are based on very few obser
vations, and hence have large variances. In more technical terms, it is a statistically inefficient 
method of calculating adjusted effects. Hence it should be used with caution when the sample 
sizes become small. In the next chapter we consider another method for calculating adjusted 
effects which is statistically optimal under certain conditions, namely multiple classification 
analysis. 
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We conclude this introductory section by presenting the results of applying test factor standard
ization to the education means. The adjusted means and effects expressed as deviations from 
the NO SCHOOLING group, are given in Table 2.7. 

We observe that the adjusted effects are quite similar to those standardized for marital duration, 
given in Table 2.4.c). Hence it appears that fa this case marital duration is a reasonable proxy 
for the demographic control of age and age at marriage. 

Under what circumstances are the means of one factor, say C, adjusted for the other two 
factors, say A and B, an adequate summary of the effects of C? As in the previous section, the 
standardized effects are weighted average of the effects within each level of A and B, which are 
constant if and only if the effects AB and C are additive. Hence standardization is particularly 
appropriate when AB and Care additive (or, a fortiori, A, Band Care additive). 
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3. ADDITIVE MODELS BETWEEN FACTORS: 
ANALYSIS OF VARIANCE AND MULTIPLE 
CLASSIFICATION ANALYSIS 

3.1 Introduction 

Direct standardization is a simple and convenient method for calculating adjusted means and 
effects. However if cell sample sizes are small, because of limitations in the total sample size or 
because of the degree of cross-classification, the method is not entirely satisfactory; procedures 
are required to deal with empty cells, and the large sampling variances of cell means based on 
small numbers of observations are not taken into account in the final estimates. Also, as sample 
sizes diminish the statistical significance of effects may be called into question. Standardization 
does not supply estimates of the statistical significance of effects, and although these can be 
calculated, a more satisfactory approach is available, namely, analysis of variance. 

In the first chapter we noted the decomposition of the observed values of the dependent 
variable into fitted values under some model, and residuals representing departures from the 
model. Before proceeding further it is convenient to relate the particular methods of the 
previous chapter to this general conceptual framework. 

We began with the simplest model which summarizes the individual values of the dependent 
variable in a single number, the mean f. The corresponding decomposition, given as equation 
(1.1), was 

(3.1) 

observed fit + residual 

The next step was to construct a one way cross-tabulation of the means of y by the factor 
LVED = Level of Education. To write down the corresponding decomposition, relabel the 
values so that Yij is the parity for individual i within category j of level of education. Then the 
?tted value under the model is Yj, the mean parity for education levelj, and the decomposition 
IS 

= + (3.2) 

observed = fit + residual 

We denote the model underlying this decomposition by [LVED]. The third step was to further 
cross-tabulate by the factor MGP6 = Marital Duration. The decomposition corresponding to this 
cross-tabulation is 

Yijk = + (3.3) 

observed fit + residual 

where now Yijk denotes the parity for individual i within the cell with educational level j, 
marital duration level k, and Yjk is the mean parity of individuals in this cell. We denote the 
model underlying this cross-tabulation by [LVEDxMGP6]. The extension to three-way tables is 
clear. 

How does the technique of standardization fall into this scheme? Let us consider the case of the 
two-way table. We have noted the strong relationship between standardization and an additive 
structure for the cell means. Namely, if the means have an additive structure then the effects of 
one factor within levels of other factor are equal and given by the adjusted effects from stand
ardization for any choice of standard. Moreover, the means inside the table can be constructed 
from the adjusted means found by the method. In fact, direct standardization co"esponds to 
fitting an underlying additive model between the factors. 
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To write the data decomposition, let Yjk be the mean for the cell with LVED = j and MCP6 = k. 

Suppose we form adjusted means for both factors by standardizing with respect to standard 
distributions { Wj} for education and { vk} for marital duration. That is, we form adjusted 
means 

= = 

Let m be the (weighted) average of the adjusted means of either factor, that is, 
,.., ,..,,,, 

m ~vkyk = ~WjYj· 
k J 

It is readily shown that both expressions for m are equal. Now let rj and ck be the adjusted 
effects of the factors, expressed as deviations from m. That is, 

Then the fitted values from direct standardization take the additive form 

" µjk m+rj+ck. (3.4) 

What we have constructed is the additive structure { µlk} which would have gil!!n the adjusted 
effects and mean that we have obtained by standardizing the observed means Yjk· The decom
position corresponding to the method is 

.... .... 
µjk +(y ijk - µjk) ' (3.5) 

observed fit + residual 

where Yijk is the individual parity defined as for equation (3.3), and. µjk is given by equation 
(3.4). Tlie decomposition corresponds to an additive model for the factors, which we write 
[LVED+MGP6]. 

Why should we. const~uct fitted means {~ik} by this~laborate procedure when.th~ population 
means are readily estimated by the sampfe means { Yjk} ? There are three prmc1pal reasons. 
Firstly, the additive means are based on a small number of parameters, J+K-1 for a JxK table, 
and hence are more stable than the observed means in the table, particularly when the sample 
sizes are small. That is, fitting the additive model effectively smooths the observed means and 
reduces sampling fluctuations. Secondly, the additive model provides a summary of the table, 
the adjusted means, which have an appealing substantive interpretation. Thirdly, the deviations 
of the fitted means µjk under the additive model from the sample means Y'k are convenient 
quantities for studying the pattern of interactions in the table. If the residuals in (3.5) are 
further decomposed in the form 

= Yjk -.Ujk + Yijk -Yjk' (3.6) 

then the components YJk - ~k' are the average residuals in each cell, and represent deviations 
from the additive structure f'or the cell means, and the components Yijk - Yjk measure within 
cell variations in the dependent variable. 

The results of constructing the fitted values for the data in Table Dl are given in Table 3.1. The 
first entries in the body of the table are the cell sample means, the second entries are the fitted 
values, and the third entries are the residuals. The last column gives the adjusted means of 
MGP6 and the last row gives the adjusted means of LVED. The final entry, 3.88, is the value of 
m, the weighted average of the adjusted means. Note that this does not equal the overall sample 
mean for the data, 3.84, an unfortunate characteristic of any form of standardization. The form 
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TABLE 3.1: Mean Number of Children Ever Born, by Marital Duration and by Level of 
Education: A) Observed Means, B) Fitted Means from Test Factor Standardization, C) Average 
Residuals 

Lved: Level of Education 

MGP6 
Marital No 1-S 6-9 10 or Adjusted 

Duration Schooling Years Years More Years Means of 
(Years) (1) (2) (3) (4) MGP6 

0-4 
.96 a .88 .95 .92 .92 

1.18 b) 1.02 .79 .47 (1) -.22 c) -.14 -.16 .45 

5-9 
2.54 2.46 2.39 2.39 2.45 
2.71 2.55 2.32 2.00 

(2) -.17 -.09 .07 .39 

10-14 3.87 3.91 3.73 3.14 3,75 

(3) 4.01 3.85 3.62 3.30 
-.14 .06 .11 -.16 

15-19 5.13 4.97 4.61 4.13 4.80 

(4) 5.06 4.90 4.67 4.35 
.07 .07 -.06 -.22 

20-24 6.22 5.87 5.22 4.47 5.60 

(5) 5.86 5.70 5.47 5.15 
.36 .17 -.25 -.68 

25 + 6.92 6.55 6.23 .5.97 6.47 

(6) 5.86 5.70 5.47 5.15 
1.06 .85 .76 -.82 

Adjusted Means 
of Lved 4.14 3.98 3.75 3.43 3.88 

chosen is as before test factor standardization; thus the last row is the same as the last row of 
Table Dl. 

To obtain the fitted value for row j and column k, the adjusted means for row j and column k 
are summed and then the overall mean is subtracted.* For example, for row 2, column 3 we 
obtain the fitted value 

= 2.45 + 3.75 - 3.88 2.32. 

Finally, the average residuals are calculated by subtracting the fitted means from the observed 
means in each cell. · 

If the data were exactly additive, the observed and fitted values would be equal and the average 
residuals would all be zero. The average residuals thus represent interaction effects between the 
factors. These show a systematic pattern; namely they tend to be negative in the north-west and 
south-east portions of the table, and positive in the north-east and south-west portions. This 
pattern arises from fitting average adjusted effects for education which are too large for low 
marital durations and not large enough for high marital durations. 

* This is clearly equivalent to adding m to the sum of adjusted effects, rj +ck. 
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The average residuals are subject to certain restrictions; that is each row or column averages to 
zero over its respective standard distribution. Different standard distributions give different sets 
of residuals, although with similar patterns. 

3.2 Multiple Classification Analysis 

We now ask the question, is there a set of fitted values with an additive structure which fits the 
data better, in the sense of yielding smaller average residuals. The answer to this question is yes, 
and the method which finds (in fact, is defined to find) a best fitting additive structure is multi
ple classification analysis (MCA). 

To define what is meant by "best", we need a criterion for measuring the fit. For MCA, this is 
given by the sum of squares of the average residuals, weighted by the sample size in each cell, 
that is 

SS 
J 
~ 

j=l 

K 
~ 

k=l 

Thus for the two-way table, MCA calculates fitted values 

= 

(3.7) 

(3.8) 

TABLE 3.2: Mean Number of Children Ever Born, by Marital Duration and by Level of 
Education; A) Observed Means, B) Fitted Means from MCA, C) Average Residuals 

Lved: Level of Education 

MGP6 
Marital No 1-5 6-9 lOor Adjusted 

Duration Schooling Years Years More Years Means of 
(Years) (1) (2) (3) (4) MGP6 

a) 
.88 .95 .92 .92 0-4 .96 b) 

(1) 1.31 ) 1.07 .86 .71 
-.35 c -.19 +.09 .21 

5-9 2.54 2.46 2.39 2.39 2.49 
(2) 2.78 2.54 2.33 2.18 

-.24 -.08 .06 .21 

10-14 
3.87 3.91 3.73 3.14 3.77 
4.06 3.82 3.61 3.46 (3) -.19 .09 .12 -.32 

15-14 5.13 4.97 4.61 4.13 4.82 

(4) 5.11 4.87 4.66 4.51 
.02 .10 -.05 -.38 

20-24 6.22 5.87 5.22 4.47 5.72 
6.01 5.77 5.56 5.41 (5) .21 .10 -.34 -.94 

25 + 6.92 6.55 6.23 5.97 6.53 

(6) 6.82 6.58 6.37 6.22 
.10 -.03 -.14 -.25 

Adjusted Means 
of Lved 4.23 3.99 3.78 3.63 3.94 
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TABLE 3.3: Stem and Leaf Plots* Comparing the Distribution of Absolute Residuals x 100 
from Test Factor Standardization and from MCA 

Test Factor Standardization 6 100--109 Multiple Classification Analysis 
90-99 4 

5 2 80-89 
6 70-79 
8 60-69 

50-59 
5 40-49 

9 6 30-39 2 4 5 8 
5 2 2 20-29 1 1 1 4 5 

7 7 6 6 4 4 1 10-19 0 0 0 2 4 9 9 
9 7 7 7 6 6 0-9 2 3 5 6 8 9 9 

*Note: A Stem and Leaf Plot invented by J.W. Tukey, is a histogram on its side with the individual data values 
retained. The stem is a set of grouping invervals, here in the centre of the diagram, varying from 0-9 to 
100-109. The leaves are the values falling in each interval, ordered and represented by their last digits. 
Thus the leaf for MCA corresponding to the 10-19 group. 

0 0 0 2 4 9 9, 

represents the set of absolute residuals 10, 10, 10, 12, 14, 19, 19. The outline of the plot gives the 
shape of the distribution. However, unlike a histogram the values are retained. For further details, see 
Tukey (1977). 

which minimize the weighted sum of squared residuals, ss. The fitted values from MCA are 
given in Table 3.2, and are in fact the means given earlier in Table 2.2. 

A comparison of the (average) residuals in Tables 3.1 and 3.2 reveals the improvement in the fit 
obtained by MCA. The distributions of the absolute residuals are compared in Table 3.3, and 
indicate six residuals with absolute values of more than forty from standardization, compared 
with only one frorri MCA. 

The large residual from MCA illustrates an important property of MCA, and in particular the 
criterion sum of squares (3. 7), namely that it weights the squared residuals by the sample size 
njk in each cell. Thus empty cells are given weight zero, that is are effectively ignored. Cells 
with small counts are given less weight than cells with large counts, which implies that the fitted 
values are allowed to deviate more from the observed means if the observed means are based on 
small samples and are thus subject to a high variance. This rather sensible property is not shared 
by the fitted values from standardization. 

Compare, for example, the residuals from the cell with MGP6=5 and LVED=4, with n54=40 
observations, with the cell with MGP6=6 and LVED=l, with 501 observations. Standardization 
yields residuals of -.68 and 1.06 respectively for these cells. Thus the fit is worse for the cell 
with a well determined mean. MCA yields residuals of -.94 and .10 respectively. Thus the fit is 
worse than that from standardization for the cell with 40 observations, but is very good for the 
cell with 501 observations. The conclusion is that if the sample sizes are small enough for 
sampling error to be substantial, then MCA is a much more sensible way of determining the 
fitted values, and hence of calculating adjusted effects. Finally, the abnormally large negative 
residual from MCA for the cell with MGP6=5, LVED=4, suggests that the population mean for 
that cell may be underestimated by the sample mean, 5 .41. An estimate of about 4.9 may be 
more reasonable on the basis of neighbouring residuals. 

The adjusted means from MCA are presented in the margins of Table 3.2, and the last entry is 
their weighted average, m=3.84. Note that this equals the weighted mean of the sample. This no 
accident: it can be shown that the value of m which with the other parameters minimizes the 
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weighted sum of squares is always the weighted sample mean y. Another way of saying this is 
that the adjusted effects, taken about the sample mean, average to zero. Comparison of the 
adjusted means of MGP6 and LVED in Table 3.2 and 3.3 indicate quite small differences, the 
largest being the means for the last education group (3.63 for MCA, 3.43 for standardization). 
Thus the methods differ more in the fitted values and residuals inside the table than in the 
average effects in the margins. 

It is customary in MCA to present effects as deviations from the overall mean, rather than as 
deviations from a reference category as in Table 2.4. The output is given in the form of an 
MCA table. The table for the data in Table Dl is presented in Table 3.4. The first column of the 
table gives the sample counts for each category of the cross-classifying factors. The second 
column gives the set of unadjusted deviations from the overall mean and the fourth column 
gives the set of deviations for each factor, adjusted for the other factor. The third and fifth 
columns give summary measures of the effects, Eta and Beta, which are discussed in more 
detail later. For the factor Educational Level the Eta value for the unadjusted deviations is .32 
and the Beta value for the adjusted deviations is much lower, .07, indicating the reduction in 
the effect of Educational Level when Duration is controlled. Note that by subtracting the devia
tions for LVED=2, 3 and 4 from the deviations for LVED=l, we obtain the unadjusted and 
adjusted effects in the form of Table 2.4 a) and c). 

3 .3 Analysis of Variance: Introduction 

So far we have been concerned with estimating sets of effects for factors, unadjusted or adjust
ed for associated factors. We now describe a way of summarizing a set of effects in a single 
number, indicating the overall magnitude of the differences between the category means. There 
are two reasons for doing this. The first is to derive tests for the statistical significance of the 
effects, that is to find out whether the observed differences could be attributable to sampling 
fluctuations rather than real differences in the population means. The second reason is to allow 
a simple comparison of the effects of a particular variable when adjusted for a variety of the 
other factors. The first of these reasons is probably the more important of the two. The basic 
measures employed are the sum of squares (SS) for an effect, and a closely related quantity the 
mean square (MS). The method of calculation is called analysis of variance. 

Analysis of Variance is closely related to the decomposition of the observed values of the 
response into fitted values and residuals. That is, 

observedi fiti + residuali , 

where i is again a subscript denoting the individual. Squaring this equation and summing over 
individuals i, we obtain 

~ observed~ ~ (fiti + residuali)2 

i I 1 

~ fie + ~ residual: + 2 ~ fiti . residuali . 
i l i I i 

It can be shown that if the fit component is calculated so that the sum of squared residuals is 
minimized then the last term on the right hand side is equal to zero. That is, we have 

~ observed: ~ fit 2 + ~ residuaI: . 
i I i i l 

If the observed and fitted values are measured around the overall sample mean, we obtain· the 
basic equation of analysis of variance. That is, if Yi is the observed value, Yi is the fitted value, 
and Yi - Yi is the residual, then 

~ (Y· -Y)2 = ~ (y. -Y)2 + ~ (Y· - y.)2 (3.9) 
ii ii i 11 

The left hand side represents a summary measure of the variation of the individual values Yi 
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TABLE 3.4: Multiple Classification Analysis of Parity, by Marital Duration and by Level of 
Education 

Grand Mean= 3.94 Adjusted for 
Adjusted for Independents 

Unadjusted Independents + Covariates 
Variable+ Category N Dev'n Eta Dev'n Beta Dev'n Beta 

MGP6 
1 0-4 1280 -3.02 -2.92 
2 5-9 1231 -1.51 -1.45 
3 10-14 1118 -.19 -.17 
4 15-19 1057 .90 .88 
5 20-24 893 1.84 1.78 
6 25 + 1231 2.71 2.59 

.70 .68 
LVED 

1 No Schooling 1512 1.23 .29 
2 1-5 Years 2686 .30 .05 
3 6-9 Years 1704 -.69 -.16 
4 10 +Years 908 -1.64 -.31 

.32 .07 
Multiple R Squared .497 
Multiple R .705 

about the mean; in fact it is proportional to the variance. The first term on the right hand side 
summarizes the variation accounted for by the fitted values from the model, and the remainder 
summarizes the variation not accounted for in the model. All analysis of variance tables are con
structed from decompositions of this simple form. 

3.4 One-Way and Two-Way Analysis of Variance 

For a one-way classification by factor A let Yij be the value of the dependent variable for 
individual i within category j of the classification. The fitted values for individuals in category j 
are all equal to Yi, the sample mean for that category, and the decomposition of the data is 
given by equation l3.2). The analysis of variance decomposition is thus 

~ ~ (y ... y)2 = ~ ~ (Y·. y)2 + ~ ~ (y ... y.)2 . 
i j lJ i j J i j lJ J 

SST SS A + SSRES 

The sum of squares SS A measures the variation of the response between the categories of the 
factor A, and hence is the sum of squares associated with the factor A. The sum of squares 
SSRES measures the variation of the response within the categories of the factor A, and is 
called the error or residual sum of squares. These statistics can be entered in a one-way ANOV A 
table, as in Table 3.5. 

The first column of the ANOV A table indicates the source of variation, and the second column 
presents the sum of squares associated with each source. The third column gives the degrees of 
freedom, which equals the number of independent parameters associated with each source. If 
there are N observations and the factor A has J levels, there are N-1 degrees of freedom for SST 
(the number of observations less one degree of freedom for the grand mean), and this decom
poses into J-1 degrees of freedom for the effects of A and N-J degrees of freedom for the 
residual. The next column gives the mean square for each source, defined as the sum of squares 
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TABLE 3.5: One-Way ANOV A Table for a Factor A. 

Source of Significance 
Variation SS df MS F ofF 

A SSA J-1 MSA =SSA/(J-1) MSA/MSRES p 

Residual SS RES N-J MSRES = SSREs/(N-J) 

Total SST N-1 MST = SST/(N-1) 

TABLE 3.6: One-Way Analysis of Variance of Parity, by Level of Education 

Source of Sum of Mean Significance 
Variation Squares DF Square F ofF 

Main Effects 5747.380 3 1915.793 261.694 .000 
LVED 5747.380 3 1915.793 261.694 .000 

Explained 5747.383 3 1915.794 261.694 .000 

Residual 49817.548 6805 7.321 

Total 55565.031 6808 8.162 

divided by the degrees of freedom. The magnitude of the effects of A can be compared with the 
average within cell variability by comparing MSA with MSRES· 

Since the survey data are based on a sample of the population, the means for each category of 
A can differ when there is no difference in the means for the population from which the sample 
is drawn. Hence a test of statistical significance of the effects of A is desirable. This is achieved 
by the F-test in the last two columns of Table 3.5. If i) the data are a random sample from the 
population, ii) the variance of Y within each category of A is constant, iii) the population 
means in each category of A are in fact equal, and iv) the cell means are normally distributed, 
then 

F = 
MSA / MSRES 

has an F distribution with (J-1) and (N-J) degrees of freedom. The significance level of the F 
statistic is given in the last column of Table 3 .5. For example, if P;;;. 0.05 then the effects of A 
are not significant at the 5% level. 

The one-way ANOVA for the data in Table 2.1 is presented in Table 3.6. The mean square for 
the effects of educational level is 1915 .8, compared with a residual mean square of 7.32. These 
yields a highly significant F value of 261.7. That is, the difference in the unadjusted education 
means cannot be attributed to random fluctuations. 

For a two-way table with factors A and B more than one decomposition of the total sum of 
squares is possible. Treating AB as a single factor, we obtain as before 

+ 

where SSAB is the sum of squares for the joint factor (AB) and SSRES is the residual sum of 
squares. Then SS AB can be decomposed into SS A+B' the sum of squares for main effects of A 
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and B assuming an additive model, and SS A.B' the sum of squares for the interaction of A and 
B, adjusted for the main effects of A and B: 

+ SSA.B. 

Finally the sum of squares for the main effects, SSA+B can be distributed between the effects 
of A and B in two ways. 

= + 

SSAIB + 

where SSA and SSB are the sum of squares for the unadjusted effects of A and B, and SSAIB 
and SS BIA are the sum of squares for the effects of A adjusted for B and B adjusted for A. 

Hence the full decompositions are 

SST = SSA + SSBIA 
A, unadjusted B, adjusted 

for A 

or SST SSB + SSAIB 
B, unadjusted A, adjusted 

for B 

+ ssA.B 
AB 

interaction, 
adjusted for 

A+B 

+ ssA.B 
AB 

interaction, 
adjusted for 

A+B 

+ 

+ 

SS RES 
residual 

SS RES 
residual 

Note that when A and B are not associated, the adjusted and unadjusted effects of A or B are 
equal. Hence one would expect the sum of squares of these effects to be equal, and this is 
indeed the case. That is, SSA = SSAIB and SSB = SSBIA, and the two alternative decom

positions of SST are the same. A special case of this is balanced analysis of variance, where the 
cell sample sizes are all equal. 

The sums of squares from these decompositions are presented in a two-way analysis of variance 
table. Two common modes of presentation, classical and hierarchical, are illustrated for the 
data of Table Dl in the ANOV A Tables 3 .7 and 3.8. Both tables present sums of squares for the 
main effects, SSA+B' the interactions SSA.B> the total explained by AB, SSAB' the residual, 
SSE, and the total, SST, in the rows as indicated. In a classical analysis of variance (Table 3. 7), 
the adjusted sums of squares for each of the main effects A and B, SSAIB and SSBIA, are 

presented. Note that these do not add up to SSA+B. For example in Table 3.7, A= MGP6, B = 
LVED and 

SSMGP6ILVED + SSLVEDIMGP6 =I= SSMGP6+LVED 

218808 + 225.5 =I= 27628.2 

In a hierarchical analysis of variance (Table 3.8) the sums of squares for the first effect specified 
on the ANOV A control card is unadjusted, and the second effect is adjusted. Thus if A is speci
fied first, SSA and SSBIA are presented, and if Bis specified first, SSB and SSAIB are present

ed. In both cases the surhs of squares do add up to SSA+B. For example, in Table 3.8, 

29 



TABLE 3.7: Classical Two-Way Analysis of Variance of Parity, by Marital Duration and by 
Level of Education 

Source of Sum of Mean Significance 
Variation Squares DF Square F ofF 

Main Effects 27628.219 8 3453.527 845.017 .000 
MGP6 21880.840 5 4376.168 1070.770 .000 
LVED 225.538 3 75.179 18.395 .000 

2-Way Interactions 206.965 15 13.798 3.376 .000 
MGP6 LVED 206.963 15 13.798 3.376 .000 

Explained 27835.184 23 1210.225 296.121 .000 

Residual 27729.848 6785 4.087 

Total 55565.031 6808 8.162 

TABLE 3.8: Hierarchical Two-Way Analysis of Variance of Parity, by Marital Duration and by 
Level of Education 

Source of Sum of Mean Significance 
Variation Squares DF Square F ofF 

Main Effects 27628.219 8 3453.527 845.017 .000 
MGP6 27402.684 5 5480.537 1340.990 .000 
LVED 225.535 3 75.178 18.395 .000 

2-Way Interactions 206.965 15 13.798 3.376 .000 
MGP6 LVED 206.963 15 13.798 3.376 .000 

Explained 27835.184 23 1210.225 296.121 .000 

Residual 27729.848 6785 4.087 

Total 55565.031 6808 8.162 

TABLE 3.9: Hierarchical ANOVA Table of Parity on Marital Duration and Level of Education, 
for British Data in Table D3. 

Source of Sum of Mean Significance 
Variation Squares DF Square F of F 

Main Effects 2714.299 7 387.757 239.473 .000 
MGP5 2641.761 5 528.352 326.303 .000 
LVED 72.538 2 36.269 22.399 .000 

2-Way Interactions 18.959 10 1.896 1.171 .305 
MGP5 LVED 18.959 10 1.896 1.171 .305 

Explained 2733.258 17 160.780 99.295 .000 

Residual 8100.891 5003 1.619 

Total 10034.148 5020 2.158 
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+ SSLVEDIMGP6 SSMGP6+LVED, 

27402.7 + 225.5 27628.2 

In SPSS, the hierarchical ANOV A is obtained by specifying OPTION 10 on the OPTIONS cards. 
We shall generally adopt the hierarchical form since the sums of squares add up correctly. Note, 
however, that for the two way table the classical ANOV A gives more information since both 
hierarchical ANOV As can be derived from it by subtraction, but the reverse procedure is 
impossible. 

As noted above, the additive parts of the ANOV A table are based on the same model as that 
used for Multiple Classification Analysis. In fact the Eta and Beta measures in the MCA Table 
are derived from sums of squares in the ANOV A table. Specifically the squares of ETA and 
BET A for an effect A are 

ETA2 SS A/SST BET A 2 = SSAIB /SST 

and are interpreted as the proportions of the total variance explained by the unadjusted and 
adjusted effects of A, respectively. 

Two way analysis of variance again allows us to test the statistical significance of effects. A test 
for the significance of the interactions is obtained by comparing the interaction mean square, 
MS A.B' with the residual mean square, MSRES· Specifically, the F statistic, MS A.BlMSRES' is 
compared with the tabulated F distribution with the degrees of freedom of the interaction A.B 
in the numerator and of the residual in the denominator. In SPSS output, F values are given in 
the penultimate column of the table, and the last column gives the P-value, the probability of 
obtaining a value of F higher than that observed under the null hypothesis that the interactions 
are zero in the population. For example, in Table 3.8, the F-value for the interactions is: 

13.798/4.087 = 3.376, 

which is highly significant, giving a P-value indistinguable from zero to three decimal places. 
Thus the additive model [A+B] does not fit the data, a result which confirms the visual inspect
ion of the data given in Section 2.2. 

Table 3.8 also gives F-values for the unadjusted effects of MGP6 (F=1340.990) and for the 
effects of LVED adjusted for MGP6 (F=18.395), both highly significant. The former confirms 
the obvious fact that differences in parity exist between duration groups. The latter the less 
obvious finding that significant educational differences persist after marital duration is con
trolled. 

An important objection can be raised to testing for the significance of the adjusted effects of 
education in this example. As we noted in Chapter 2, the adjusted effects are uniquely defined 
only if the additive model [MGP6 + LVED] holds for the population means. However, this is 
never likely to be exactly correct in practice, and in the present example we have strong evi
dence that it is not the case, since the interactions are highly significant. Thus testing the signi
ficance of adjusted effects has little point when the interactions have been shown to be non
zero. 

Nevertheless, even in the presence of interaction, the statistics for the main effects in the 
ANOV A table still have some value, as summary measures of the size of an average of the 
adjusted main effects. The effect of the control of marital duration on the education different
ials is illustrated by the reduction of the mean square for education from MSLVED = 261.7 
(Table 3.6) to MSLVEDIMGP6 = 75.2 (Table 3.7). The latter compares with the interactions 
mean square of 13 .8 and the residual mean square of 4.09. Thus the average size of the adjust
ed main effects is considerably greater than the average size of the interactions, although the 
latter are statistically significant. 
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In general we would expect a significant interaction between these variables on a priori grounds, 
to the extent that differentials according to educational level emerge as marital duration in
creases. However this is not always the case. Equivalent data for the British survey (Table D3) 
indicate an initial differential by educational level in the first marriage duration group which is 
maintained at a similar level for successive marriage duration groups. The resulting analysis of 
variance, Table 3.9, reveals no evidence. of a significant interaction effect. The issue of inter
actions is considered further in Section 3 .5 .1. 

It should be pointed out that the assumptions underlying the F tests in this example are vio
lated, and hence the significance levels can be regarded as at best approximate. The tests assume 
simple random sampling, whereas all WFS samples are based on complex sampling designs 
involving stratification and clustering. The effect of this on significance tests is largely un
known, although there are reasons to believe that for WFS data it is not critical. More import
ant for the present example is the assumption that the variance of the response within the cells 
of the table is constant, (the assumption known as homoscedasticity ). This is clearly untenable 
for the present example, since the variance of parity clearly increases with marital duration. 
This is confirmed by the sample standard deviations in Table Dl. Other situations where the 
variance is not constant are data on binary responses, such as Current Use of Contraception (1 = 
Yes, 0 =No), where the cell means lie close to zero or one. In these cases the variances of the 
response decreases as the mean approaches the limiting values, zero and one. 

For the present example the lack of homoscedasticity seriously distorts the significance levels, 
and some weighting of the individual observations is desirable. This is described in Section 3.5. 
However even after allowance is made for gross departures from the assumptions, we are rarely 
in a situation to interpret significance tests exactly. This does not mean that the statistical 
analysis is rendered useless, but rather that the statistics should be regarded as useful diagnostic 
measures derived from the data, and should not be used to construct strict 5%/95% cut off 
points for deciding whether an effect is present or not. 

3.5 Three-Way and Higher Tables 

The methods of multiple classification analysis and analysis of variance are particularly valuable 
for multiway tables involving three or more factors. Simple techniques such as standardization 
become awkward to apply because of empty cells, and it becomes increasingly advisable to use 
a statistical model to smooth the cell means. 

For a three-way table of means with factors A, B, and C the analysis of variance is based on the 
decomposition 

= SS ABC + SS RES 

= SS A+B+C + SS A.B+B.C+C.A + SS A.B.C + SS RES 

where SSRES is the residual sum of squares, SS ABC is the sum of squares for the joint variable 
(ABC), which decomposes into SSA+B+C the sum of squares for the main effects of A, Band 

' C, SSA.B+B.C+C.A, the sum of squares for the two-way interactions adjusted for the main 

effects, and SS A.B.C, the sum of squares for the three-way interactions adjl}sted for the main 

effects and the two-way interactions. Note. the distinction drawn here between interactions of 
different orders. Two-way interactions measure differences in the effect of one factor between 
levels of a second factor, averaged over the third factor. Three-way interactions measure differ
ences in the two-way interactions between levels of the third factor. For higher way tables 
interactions between four or more factors are defined in a similar way. 

High order interactions are a problem in two respects; they are hard to interpret, and they are 
numerous, particularly for cross-tabulations involving factors with more than two or three 
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TABLE 3.10: Classical Three-Way Analysis of Variance of Parity by Age, by Age at Marriage, 
and by Level of Education Treated as a Dichotomy 

Source of Sum of Mean Significance 
Variation . Squares DF Square F ofF 

Main Effects 27413.930 8 3426.741 834.409 .000 
AGP5 17964.504 4 4491.126 1093.586 .000 
AMGP 7919.861 3 2639.954 642:827 .000 
LVED 105.523 1 105.523 25.695 .000 

2-Way Interactions 326.262 19 17.172 4.181 .000 
AGP5 AMGP 210.000 12 17.500 4.261 .000 
AGP5 LVED 49.702 4 12.425 3.026 .017 
AMGP LVED 53.307 3 17.769 4.327 .005 

3-Way Interactions 21.879 11 1.989 .484 .914 
AGP5 AMPG LVED 21.879 11 1.989 .484 .914 

Explained 27762.070 38 730.581 177.896 .000 

Residual 27802.961 6770 4.107 

Total 55565.031 6808 8.162 

levels. For example, for a three-way table with factors A, 13 and C with J, K and L levels, 
respectively, there are (J-1) (K-1) (L-1) linearly independent three-way interactions. Thus for 
the data in Table D2 there are (5-1) (4-1) (4-1) = 36 of them. In fact, a full analysis of variance 
for these data was not possible in this analysis because of excessive space requirements in the 
computer. 

Two solutions to the analysis of Table D2 are presented. The first is to group the factor level of 
education into two levels, 1 = less than 6 years of education, 2 = Six or more years of edu
cation. This allows the full analysis of variance table to be calculated and it is given in Table 
3.10. The second solution is to set the three-way interactions equal to zero and to calculate 
only the main effects and two-way interactions. This is achieved in SPSS by specifying option 4 
in the OPTIONS card, and results in the sum of squares SS A.B.C. being added to (or "pooled" 
with) the error sum of squares, SSRES. The results from this analysis appear in Table 3 .11. 

The sums of squares SS A+B+C and SS A.B+B.C+C.A are again decomposed into components for 
the separate factors. The sum of squares for A.B, A.C and B.C are adjusted for main effects and 
other two-way interactions. The sum of squares for A, B and C are presented hierarchically, 

SS A, SSBIA, SSCIA+B , 

if OPTIONS = 10 is specified, and otherwise in the classical manner, adjusted for other main 
effects: 

SSAIB+C, SSBIA+C, 

Table 3 .11 displays the ANOV A for the data in Table D2 in hierarchical form. 

The full ANOVA of Table 3.10 reveals a mean square of only 1.99 for the 3-way interactions 
between AGP5, AMGP and LVED, compared with a residual mean square of 4.1. Hence there is 
no evidence of significant 3-way interactions and there is some justification in omitting them 
for the analysis of the original data. 
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TABLE 3.11: Hierarchical Three-Way Analysis of Variance of Padty, by Age, by Age at 
Marriage, and by Level of Education in Four Groups, with 3-Way Interactions Pooled with the 
Residual 

Source of Sum of Mean Significance 
Variation Squares DF Square F of F 

Main Effects 27468.961 10 2746.898 670.515 .000 
AGP5 17267.563 4 4316.891 1053.750 .000 
AMGP 10040.844 3 3346.948 816.987 .000 
LVED 160.555 3 53.518 13.064 .000 

2-Way Interactions 381.930 33 11.574 2.825 .000 
AGP5 AMGP 190.685 12 15.890 3.879 .000 
AGP5 LVED 87.205 12 7.267 1.774 .047 
AMGP LVED 79.827 9 8.870 2.165 .022 

Explained 27850.891 43 647.695 158.102 .000 

Residual 27714.141 6765 4.097 

Total 55565.031 6808 8.162 8.162 

Table 3.11 indicates a large interaction between AGP5 and AMGP (F 12 6765 = 3.88) and 
smaller but significant interactions between AGP5 and LVED (F= 1.77) and between AMGP 
and LVED (F= 2.17). The Multiple Classification Analysis for the data in Table D2 is presented 
in Table 3.12. The adjusted effects for each factor in this table are based on fitting the additive 
moqel [AGPS + AMGP + LVED] to the data, and are adjusted for both the other factors. Thus 
in particular the effects for LVED are adjusted for age and age at marriage, and can be com
pared with the adjusted effects from standardization given in Table 2.7. Also, a comparison of 
Table 3.12 and 3.4 indicates that the control of AGP5 and AMGP has a similar effect on the 
differentials by educational level as the control of MGP6. 

An alternative adjustment for Age and Age at Marriage which incorporates the two-way inter
actions between Age and Age at Marriage is to form the joint variable (AGP5*AMGP) and 
calculate the analysis of variance of NCEB on LVED and (AGP5.AMGP). This is equivalent to 
fitting the additive model [AGP5.AMGP+LVED]. The analysis of variance appears in Table 
3.13 and the resulting MCA table is given in Table 3.14. This analysis is theoretically preferable 
to Table 3 .12 since the included interactions are significant. However, the adjusted effects of 
Educational Level are not noticeably altered. 

3.6 Refinements 

Interactions are often important and interesting in their own right - for example, cross-tabular 
analysis of the Fiji Fertility Survey indicated an important interaction between Race and 
Educational Level, namely that after adjusting for suitable demographic controls, differentials 
in fertility by educational level were evident for Fijians of Indian race but not for indigenous 
Fijians. An additive model between Education and Race would ignore this interaction and 
simply calculate an average adjusted effect of education for both races. 

Nevertheless, sometimes interactions are an artifact of the way in which variables are measured. 
A change of variable or the scale in which a variable is measured may eliminate interactions and 
lead to a simpler interpretation of the data. 

A common example of this occurs with dichotomous responses, taking values 0 and 1. Here the 
mean of Y in a cell corresponds to the proportion of cases with Y = 1. If the proportions lie 
near zero or one, then linear additivity can conflict with the requirement that proportions lie 
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TABLE 3.12: Multiple Classification Analysis Corresponding to ANOVA on Table 3.11 

Grand Mean= 3.94 Adjusted for 
Adjusted for Independents 

Unadjusted Independents + Covariates 
Variable + Category N Dev'n Eta Dev'n Beta Dev'n Beta 

AGP5 
1 15-24 1088 -2.55 -2.92 
2 25-29 1295 -1.41 -1.29 
3 30-34 1221 -.14 .03 
4 35-39 1203 .95 1.06 
5 40-49 2003 1.81 1.76 

.56 .58 
AMGP 

1 LT15 984 1.81 1.45 
2 15-19 2991 .48 .63 
3 20-24 1932 -.81 -.61 
425 + 903 -1.83 -2.38 

.38 .40 
LVED 

1 No School 1512 1.23 .25 
2 1-5 Years 2686 .30 .04 
3 6-9 Years 1704 -.69 -.13 
4 10 +Years 908 -1.64 .29 

.32 .06 

Multiple R Squared .494 
Multiple R .703 

TABLE 3.13: Analysis of Variance with Age at Marriage and Age as a Joint Variable 

Source of Sum of Mean Significance 
Variation Squares DF Square F ofF 

Main Effects 27707.293 21 1319.395 321.445 .000 
AGP5.AMGP 27552.414 18 1530.690 372.923 .000 
LVED 154.879 3 51.626 12.578 .000 

Explained 27707.293 21 1319.395 321.445 .000 

Residual 27857.738 6787 4.105 

Total 55565.031 6808 8.162 

35 



TABLE 3.14: Multiple Classification Analysis Corresponding to ANOVA in Table 3.13 

Grand Mean = 3.94 Adjusted for 
Adjusted for Independents 

Unadjusted Independents + Covariates 
Variable+ Category N Dev'n Eta Dev'n Beta Dev'n Beta 

AGP5AMGP 
1 114 -1.13 -1.19 
2 165 .48 .41 
3 175 1.56 1.47 
4 200 2.62 2.48 
5 330 3.15 3.01 
6 688 -2.47 -2.46 
7 473 -.62 -.63 
8 502 .64 .61 
9 455 1.91 1.85 

10 874 2.55 2.48 
11 286 -3.30 -3.20 
12 521 -2.23 -2.14 
13 306 -.72 -.65 
14 330 .30 .36 
15 489 1.35 1.34 
17 136 -3.29 -3.14 
18 239 -2.30 -2.14 
19 218 -1.61 -1.46 
20 310 -.99 -.93 

.70 .68 
LVED 

.1 No School 1512 1.23 .25 
2 1-5 Years 2686 .30 .03 
3 6-9 Years 1704 -.69 -.12 
4 10 +Years 908 -1.64 -.29 

.32 .06 

Multiple R Squared .499 
Multiple R .706 

TABLE 3 .15: A 2 x 2 Table of Proportions Additive on the Logit Scale 

a) observed proportions 

Factor B 1 
2 

Factor A 
2 

.119 

.018 
.269 
.047 
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Factor B 1 
2 

b) logits 

Factor A 

1-2.0 
-4.0 

2 

-1.0 I 
-3.0 



between the limits zero and one. Table 3.l 5a) shows a simple example for a 2x2 table. If the 
bottom left hand proportion is deleted, then the impossible value of -.103 (=.047+.119-.269) 
is required for the means to be additive on the linear scale. In fact the means in this table are 
additive on the logit scale. That is, if the proportions are converted to logits by the trans-
formation . 

logit p = log [p/(1-p)] , 

then the logits are additive, as in Table 3.15b). The logit transformation stretches the scale at 
zero and one, thus inflating small differentials near these limiting values. 

Hence a simple approach to the analysis of cross-tabulated proportions lying near zero or one is 
transform the observed proportions to logits and carry out a standard analysis of variance of 
these transformed values. A modification is required for observed proportions of zero or one, 
for which the logit is not defined: One possibility is to replace the observed zero proportions by 
(2n)"1

, and unit proportions by l-(2n)"1 , where n is the cell sample count. A more sophisticated 
procedure based on log linear models for contingency tables is described in Little (1978). 

Returning to the response Y = Parity of our illustrative examples, we have noted that additive 
models between level of education and the demographic controls are unlikely because of the 
cumulative nature of the response over the life cycle - For the case of Sri Lanka there is clear 
evidence that interactions do exist. We now give two alternatives fertility measures for which 
additive models appear a priori more plausible. 

i) Y = log (parity) 

For countries where differences in mean parity according to a background variable increase 
with mean parity, it may be plausible that percentage (or proportional) differences in mean 
parity are the same for all levels of marital duration. This is equivalent to differences in the 
logarithm of mean parity being constant for all Jevels of marital duration, or additivity on the 
log scale. For, if µjk is the mean parity for marital duration level j, educational level k, and the 
proportional differences 

µjk/ µjk ' k*k ' 

are the same for all values of duration j, then the differences in the log means, 

are also the same for all values of duration j *. 

Thus interactions may be reduced by taking log (Parity) as the response. If logarithms are taken 
at the individual level, then some modification is required for women with zero parity, for 
which logarithms cannot be taken. One possibility is simply to restrict the analysis to women 
with one or more births. Another is to add a constant before taking logs (Hermalin and Mason, 
1979). A more sophisticated procedure based on log-linear models which avoids this problem 
is presented in Little (1978). 

ii) Y = Parity /Marital Duration (P/D). 

An alternative approach is to postulate that differences in mean parity between categories of a 
background variable are proportional to marital duration. Thus if the response is defined as 
Parity divided by Marital Duration (P /D)** an additive model is obtained. A detailed di1>cussion 
of this measure is given in Little (1977). 

* 

** 

Recall the basic property of the logarithm. 
log (µ 1/µ 2) = log µ 1 - log µ 2 for all µ 1, µ2. 

In fact, the variable is defined as l 20xParity /(Months Since First Marriage), and, as such, measures 
births per ten years of marital duration. 
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TABLE 3.16: Weighted Analysis of Variance of Parity Divided by Marital Duration, by Marital 
Duration and by Level of Education 

Source of Sum of Mean Significance 
Variation Squares DF Square F ofF 

Main Effects 1165.521 8 145.690 94.858 .000 
MGP6 1159.160 5 231.832 150.944 .000 
LVED 81.090 3 27.030 17.599 .000 

2-Way Interactions 61.361 15 4.091 2.663 .000 
MGP6 LVED 61.361 15 4.091 2.663 .000 

Explained 1226.881 23 53.343 34.731 .000 

Residual 10313.412 6715 1.536 

Total 11540.293 6738 1.713 

We shall apply the second of these approaches to the Sri Lanka data. A straight analysis of 
variance of the mean values of P/D cross-classified by MGP5 and LVED is not recommended, 
because it gives equal weight to observations with low or high marital durations. Intuitively we 
would expect the values of P/D with small values of D to be much less stable, since they are 
highly sensitive to the timing of the early births. In statistical terminology, the variance of P/D 
is not constant for all values of D, and hence one of the main statistical assumptions of Analysis 
of Variance is not satisfied. 

The solution is to carry out a weighted analysis, with weights inversely proportional to the 
variance. Here we assume that the variance of P/D is inversely proportional to D, and hence the 
weights are proportional.to D. Thus each individual in the sample is given a weight proportional 
to her marital duration. This choice of weighting is particularly appropriate for the chosen 
measure of fertility. It results in weighted means of P/D which are simply ratios of cumulated 
births divided by cumulated exposure. 

That is, 

~ Di (P/Di) I 
Subclass 

~ Di 
Subclass 

(~· Pi) I(~ Di) 
Subclass Subclass 

The weighted two-way analysis of variance is presented in Table 3.16. Unfortunately in this 
case the transformation has not eliminated the interaction between marital duration and 
educational level; it yields a highly significant F-statistic of 2.663. Inspection of the weighted 
cross-classification of P/D by MGP6 and LVED, displayed in Table D4, reveals the reason. For 
low durations, the tempo of fertility (as measured by the response) is greater than average for 
highly educated women. At high durations, the reverse is the case. Hence here it appears that 
the interaction between duration and education is an inherent characteristic of the data rather 
than an artifact of the choice of response. 

One technical difficulty in the weighted analysis needs attention. The degrees of freedom for 
residual in the ANOVA table, and hence the F statistics, are incorrect unless the weights are 
scaled so that they sum to the true number of observations, in this case 6559. The scaling here 
is not quite correct: the degrees of freedom for residual should be 6535 rather than 6715, as 
shown in Table 3.16. This inaccuracy is not serious enough to change the substantive inter
pretation of the table, but the table should be corrected in practice. Some statistical packages 
automatically scale the weights so that the degrees of freedom are correct, but this was not the 
case in the version of SPSS used here. 
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4. ANALYSIS OF COVARIANCE 

4.1 Introduction 

So far the independent variables in our examples have all been categorical in nature. The 
analyses could all be calculated using only the means, variances and sample counts within the 
cells of a cross-tabulation. From now on we consider methods which require individual level 
data. It should be stressed that this does not represent a change in the emphasis of the analysis 
from the "macro" to the "micro" level, since the statistics produced will still be averages or 
summaries based on the individual level data which lead to statements at the aggregate level. 

A common characteristic of the techniques considered so far is that they require the grouping 
of interval scaled regressors, such as age and age at marriage, into a small number of categories. 
Also the treatment of the categorical variables does not take into account any ordering between 
the categories. The effects of a grouped variable are estim~ted in a way which implies that the 
mean response is constant within the ranges of each grouping, and jumps suddenly between 
groups. For example consider the relationship between parity and marital duration for the Sri 
Lanka data. The mean parities by single years of marital duration are plotted in Figure 4.1. 
The step function represents the relationship implied by replacing marital duration by the six 
categories MGP6. As a model this is clearly not ideal, since it is discontinuous and does not 
reflect the positive relationship between duration and parity within duration groups. A finer 
grouping would model the relationship more accurately, but this increases the number of 
parameters required to represent the effect (c-1 parameters for a variable with c groups). We 
have already encountered difficulties in estimating the number of parameters required for the 
three-way analysis of variance of Section 3 .3; increasing the number of categories of marital 
duration makes problems like this even worse, and conflicts with the need for a parsimonious 
representation of effects. 

A natural alternative treatment of the means in Figure 4.1 is to fit a smooth curve to the data. 
Two alternatives are shown. The first assumes a linear relationship. In symbols, the population 
mean parity µ at duration YSFM (Years Since First Marriage) is assumed to take the form 

µ(YSFM) = cx:0 + cx:1 YSFM ( +.1) 

FIGURE 4.1: Mean Number of Children Ever Born as a Function of Years Since First Marriage. 
Sri Lanka Data 

+ = observed means 
- = fitted grouped means (MGP6) 
---- = fitted linear regression 
" .... =fitted quadratic regression 

+ 

IO 15 20 25 30 35 

Years Since First Marriage 
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Where o:1 is the slope, that is the increase in parity per year of marital duration, and o:o is the 
intercept (which might be taken as zero). This equation does not model a decline in the slope as 
marital duration increases, which is expected on substantive grounds and also apparent in the 
observed means. Hence the second curve models a linear decline by including a quadratic term 
in marital duration. That is, 

µ(YSFM) = o:0 + o:1 YSFM. + o:2 YSFM2 • (4.2) 

Here the effects of duration are represented by two parameters, 0:1, the slope (or more precise
ly the tangent to the curve) at YSFM = 0 and 0:2, the rate of change of the slope with marital 
duration. The parameters in equations (4.1) and (4.2) may be estimated by least squares, using 
a linear regression program; further details are deferred until Chapter 5. 

Inspection of Figure 4.1 indicates that the effects of duration are more closely modelled by the 
one or two parameters in the regression models ( 4.1) and ( 4.2) than by the five parameters of 
the grouped model. 

As in analysis of variance, the effect of a variable in a regression has an associated sum of 
squares, which measures the variation in the response attributable to that variable. The relative 
effectiveness of the grouped model and the regression models in capturing the effect of marital 
duration on parity can be compared via the sum of squares for the effects of duration obtained 
from each fit. These are as follows: 

Model 

Grouped 
(4.1) 
(4.2) 

Marital Duration 

MGP6 
YSFM 

YSFM and YSFM2 

Degrees of Freedom 

5 
1 
2 

Sum of Squares 

27,403 
27,696 
28,498 

The sum of squares for the grouped model is taken from Table 3.8 for the regression models 
they are taken from Tables 4.1 and 4.3. (Despite the appearance of LVED in these tables, the 
effects of duration are not adjusted by education.) The superiority of the linear regression 
representation ( 4.1) over the grouped factor MGP6 is reflected by the greater sum of squares 
explained (27 ,696 as opposed to 27,403), achieved with four less degrees of freedom. The 
addition of the quadratic term in Model ( 4.2) further improves the fit by a significant amount. 

In conclusion, polynomial regression models often provide a parsimonious method for sum
marizing the effects of interval scaled regressors. 

4.2 Analysis of Covariance 

We now return to the problem of estimating the effects of education, adjusted for marital 
duration. The adjusted means of education from multiple classification analysis are imperfect 
in that they do not take into account differences in the distribution of marital duration be
tween education groups within each level of MGP6. In other words, they also may be distorted 
by the representation of marital duration as a grouped variable. What is required is a method of 
adjustment which adopts the superior polynomial representation of marital duration described 
in the previous section. The technique which achieves this is analysis of covariance. 

In the model of equation ( 4.1) a straight line was fitted to the plot of mean parity by marital 
duration for the whole sample. In analysis of covariance a separate straight line is fitted to the 
data for each education group. The results are plotted in Figure 4.2.a. The effects of education 
adjusted for marital duration are represented by the vertical displacements between the lines. 

As with multiple classification analysis, the effects of education and marital duration are 
assumed to be additive in this method. Thus the fitted curves in Figure 4.2.a are constrained so 
that the vertical displacements between the lines are constant for all values of marital duration; 
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FIGURE 4.2: Fitted Values from Analysis of Covariance of Mean Parity on Years Since First 
Marriage and level of Education 

10 15 20 25 

Years Since First Marriage 

a) Linear Fit to Marital Duration 

30 

No School 
1-5 Years 
6-9Years 
IO or More 

10 15 20 

Years Since First Marriage 

25 

No School 
1-5 Years 
6-9Years 
10 or More 

30 

b) Quadratic Fit to Marital Duration 

in other words, the lines are parallel. The effect of marital duration adjusted for education is 
the (common) slope of the regression lines. The fitted lines are obtained by finding values of 
the common slope and the intercepts for each education group so that the sum of squared 
deviations between the observed and fitted values is minimized. 

The alternative analysis of covariance diagrammed in Figure 4.2.b assumes a quadratic relation
ship between parity and marital duration for each education group. Note that again the curves 
are parallel, reflecting the additivity assumption. This is achieved by constraining the linear and 
quadratic terms of the regression to be equal for each education group. The adjusted effects of 
education are again represented by the vertical displacements between the curves. Both the 
figures can be compared with the MCA representation in Figure 2.1.b. 

We can also write down equations for the fitted means in each model. The MCA of the previous. 
chapter was based on fitting a model where the mean parity l.ljk for marital duration group j' 
and level of education k takes the form 

(4.3) 

If the effect of marital duration is modelled by linear regression, as in Figure 4.2.a, we obtain 
the analysis of covariance model which expresses the mean parity for marital duration YSFM 
and education level k in the form 

(4.4) 

If the effect of marital duration is modelled by a quadratic regression, as in Figure 4.2.b, we 
obtain the more detailed model 

(4.5) 
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Note the similarity between ( 4.3), ( 4.4) and ( 4.5). All three equations express the fact that the 
effects are additive, that is, the effects of education are the same for all levels of marital dura
tion. For example, under model (4.5) the difference in mean parity between educational levels 
k and k' for women with marital duration YSFM is 

µk (YSFM)-µk:'(YSFM) = (µ + °'J. YSFM + <:>c2 YSFM2 + ~k) - (µ + 0<l YSFM + ~ YSFM2 +~I() 

= ~k -~k', 

and this is the same for all values of YSFM. The other models give the same result. Thus the 
adjusted effects of education are given by the parameters ~k· If the parameter~ 1 is set equal to 
zero, then ~k represents the difference between educational level k and educational level 1, 
adjusted for the effect of marital duration. The only difference between the methods is the way 
in which marital duration is controlled. 

Analysis of Covariance can be carried out using the SPSS Analysis of Variance program by 
specifying covariates on the ANOV A card. The results of fitting the model ( 4.4) with factor 
LVED and covariate YSFM are presented in Tables 4.1 and 4.2. The results for model (4.5) 
with covariates YSFM and YSFM2 are given in Tables 4.3 and 4.4. Various options are available 
for the presentation of the ANOV A and MCA tables according to whether covariates are adjust
ed before or after the main effects of factors, and whether the sums of squares for the effects 
are presented in a classical or a hierarchical form. 

Here the covariates are adjusted first, the default in SPSS. Thus in Tables 4.1 and 4.3 the sums 
of squares for the covariates are presented first and are not adjusted for the factor LVED. The 
sum of squares for LVED is presented next and is adjusted for the covariates. This sum of 
squares is slightly smaller (174.5) when the quadratic term YSFM2 is included than otherwise 
(193.0). The adjusted education effects are presented in the MCA tables, Table 4.2 and Table 
4.4. Finally Table 4.5 summarizes the adjusted and unadjusted effects of education on parity 
obtained by the various methods considered in this and the previous chapters. 

The examples of Analysis of Covariance considered so far have been restricted to a single 
factor (LVED) and have not included interaction terms. Within the context of our Analysis of 
Variance program, interactions between covariates and interactions between factors can be 
included, but interactions between covariates and factors are not allowed. As an illustration, 
Tables 4.6 and 4.7 presents the results of a weighted analysis of covariance with response parity 
divided by marital duration (P/D), weights proportional to duration, factors respondents edu
cational level (LVED) and husband's educational level (HEDL), with the same categories as 
LVED, and covariates representing the effects of marital duration and age at first marriage. The 
covariates consist of linear and quadratic terms in duration and age at first marriage (YSFM, 
YSFMSQ, AGFM, AGFMSQ), and the interaction represented by multiplying the individual 
values of years since first marriage (YSFM) and age at first marriage (AGFM), that is, 

YSFMAGFM = YSFM x AGFM. 

OPTION 10 was specified on the ANOVA card, which implies that i) Covariates are adjusted 
first, ii) factors are adjusted after the covariates, and iii) the sums of squares for covariates and 
the main effects of factors are presented in a hierarchical form. Thus, for example, the sum of 
squares for LVED in Table 4.6 (22.667) is adjusted for the covariates, and the sum of squares 
for HEDL (22.231) is adjusted for the covariates and LVED. The latter yields a highly signifi
cant F of 5.03, suggesting that husband's education has an effect on fertility after adjusting for 
respondent's education and the demographic variables marital duration and age at first mar
riage. 

Two sets of interactions are presented in Table 4.6. The interactions between age at first mar
riage and marital duration are represented by the single product term YSFMAGFM, and have a 
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TABLE 4.1: Analysis of Variance of Parity on Level of Education with Years Since First 
Marriage as a Covariate 

Source of Sum of 
Variation Squares 

Covariates 27696.445 
YSFM 27696.445 

Main Effects 192.992 
LVED 192.995 

Explained 27889.438 

Residual 27675.594 

Total 55565.031 

Covariate Raw Regression Coefficient 
YSFM .214 

DF 

3 
3 

.4 

6804 

6808 

Mean 
Square 

27696.445 
27696.445 

64.331 
64.332 

6972.359 

4.068 

8.162 

F 

6809.126 
6809.126 

15.816 
15.816 

1714.143 

TABLE 4.2: Multiple Classification Analysis Corresponding to Table 4.1 

Grand Mean= 3.94 

Variable+ Category 

LVED 
1 No School 
2 1-5 Years 
3 6-9 Years 
4 10 +Years 

Multiple R Squared 
Multiple R 

N 

1512 
2686 
1704 

908 

Unadjusted 
Dev'n Eta 

1.23 
.30 

-.69 
-1.64 

.32 

Adjusted for 
Independents 
Dev'n Beta 

-

Significance 
of F 

.000 

.000 

.000 

.000 

.000 

Adjusted for 
Independents 
+ Covariates 

Dev'n Beta 

.23 

.07 
-.14 
-.32 

.06 

.502 

.708 

TABLE 4.3: Analysis of Variance of Parity by Level of Education with Linear and Quadratic 
Terms of Marital Duration as Covariates 

Source of Sum of Mean Significance 
Variation Squares DF Square F ofF 

Covariates 28497.988 2 14248.994 3604.571 .000 
YSFM 5289.371 1 5289.371 1338.053 .000 
YSFMSO 801.545 1 801.545 202.767 .000 

Main Effects 174.547 3 58.182 14.718 .000 
LVED 174.547 3 58.182 14.718 .000 

Explained 28672.535 5 5734.507 1450.659 .000 

Residual 26892.496 6803 3.953 

Total 55565.031 6808 8.162 

Covariate Raw Regression Coefficient 
YSFM .343 
YSFMSQ -.004 
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TABLE 4.4: Multiple Classification Analysis Corresponding to Table 4.3 

Grand Mean= 3.94 

Variable+ Category 

LVED 
1 No School 
2 1-5 Years 
3 6-9 Years 
4 10 +Years 

Multiple R Squared 
Multiple R 

N 

1512 
2686 
1704 
908 

Unadjusted 
Dev'n Eta 

1.23 
.30 

-.69 
-1.64 

.32 

Adjusted for 
Independents 
Dev'n Beta 

Adjusted for 
Independents 
+ Covariates 

Dev'n Beta 

.25 

.04 
-.15 
-.27 

.06 

.516 

.718 

TABLE 4.5: Summary of Effects of Education, Expressed as Deviations from Overall Mean 

Effects of Education 
Sum of 

Method of No 1-5 6-9 10 + Squares Source 
Control Adjustment Schooling Years Years Years Mean of Effect Tables 

a. Unadjusted 1.23 .30 -.69 -1.64 3.94 5747.4 Dl, 3.6 
b. MGP6 Test Factor .26 .10 -.13 -.45 3.88 Dl, 3.1 

Standardization 
MGP6 ANOVA,MCA .29 .05 -.16 -.31 3.94 225.5 3.2, 3.4 
YSFM ANCOVA,MCA .23 .07 -.14 -.32 3.94 193.0 4.1, 4.2 
YSFM, YSFM 2 ANCOV A, MCA .25 .04 -.15 -.27 3.94 174.5 4.3, 4.4 

c. AGP5*AMGP Test Factor .29 .16 -.06 -.74 3.84 D2 
Standardization 

AGP5,AMGP ANOVA,MCA .25 .04 -.13 -.29 3.94 160.6 3.11, 3.12 
AGP5*AMGP ANOVA,MCA .25 .03 -.12 -.29 3.94 154.9 3.13, 3.14 

highly significant F value, 29.07. Indeed, note that all the covariates contribute significantly to 
the fit. The interactions between respondent's education and husband's education are repre
sented by the two-way interactions for LVED and HEDL, with 9 degrees of freedom. These 
yield a non-significant F value of 1.12, indicating no evidence of a significant effect. 

This is a fairly elaborate model, but it fails to encorporate one important feature of the data, 
namely the interactions between education and the demographic controls, as evidenced in Table 
3.16. Models which allow interactions between covariates and factors are treated in the next 
chapter. 
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TABLE 4.6: Weighted Analysis of Variance of Parity Divided by Duration by Respondent's 
Level of Education (LVED) and Husband's Level of Education (HEDL), with Linear and 
Quadratic Terms in Years Since First Marriage and Age at First Marriage and the Product of 
Years Since First Marriage and Age at First Marriage as Covariates 

Source of Sum of Mean Significance 
Variation Squares DF Square F of F 

Covariates 1585.090 5 317.018 215.281 .000 
YSFM 1098.046 1 1098.046 745.663 .000 
YSFMSQ 28.979 1 28,979 19.679 .000 
AGFM 356.166 1 356.166 241.865 .000 
AGFMSO 59.088 1 59.088 40.126 .000 
YSFMAGFM 59.088 1 42.812 29.073 .000 

Main Effects 44.909 6 7.485 5.083 .000 
LVED 22.677 3 7.559 5.133 .002 
HEDL 22.231 3 7.410 5.032 .002 

2-Way Interactions 14.849 9 1.650 1.120 .344 
LVED HEDL 14.849 9 1.650 1.120 .344 

Explained 1644.848 20 82.242 55.849 .000 

Residual 9953.146 6759 1.473 

Total 11597.994 6779 1.711 

Covariate Raw Regression Coefficient 

YSFM -.049 
YSFMSQ .001 
AGFM -.059 
AGSMSQ -.003 
YSFMAGFM -.004 

TABLE 4.7: Multiple Classification Analysis Corresponding to Table 4.6 

Grand Mean = 2.69 Adjusted for 
Adjusted for Independents 

Unadjusted Independents + Covariates 
Variable+ Category N Dev'n Eta Dev'n Beta Dev'n Beta 

LVED 
No School 2003 -.03 .07 
2 1-5 Years 2873 -.00 -.01 
3 6-9 Years 1394 .02 -.07 
4 10 +Years 511 .09 .02 

.02 .04 
HEDL 

1 No Schooling 681 -.02 .04 
2 1-5 Years 3110 .00 .01 
3 6-9 Years 2214 .03 .04 
4 10 +Years 77~ -.08 -.18 

.03 .05 
Multiple R Squared .141 
Multiple R .375 
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5. MULTIPLE LINEAR REGRESSION 

5 .1 Introduction 

In chapter 3 analysis of variance and multiple classification analysis were introduced as methods 
for analysing the effects of categorical regressors (factors) on a response. In Section 4.1 multi
ple regression was introduced as a method for calculating the effects of an interval scaled 
regressor, years since first marriage, on a response. Then in subsequent sections an extension of 
analysis of variance to include factors and covariates, analysis of covariance, was discussed. 

This terminology, which developed for historical reasons, is not entirely appropriate. Analysis 
of variance is a general method which can be applied to problems with interval-scaled regressors 
with or without factors, as well as to problems involving factors only. 

Indeed, ANOV A tables for Analysis of Covariance have been presented in Section 4.2. Further
more, all the models fitted can be viewed as special cases of multiple linear regression. Thus in 
this chapter analyses of the previous chapters are replicated using a multiple regression program. 

The perspective adopted in this chapter is more general and flexible than that of previous chap
ters, and includes models involving interactions between covariates and factors which lie outside 
the scope of Chapters 3 and 4. The basic method of analysis is multiple linear regression, which 
can be used to fit models involving the main effects of categorical and/or interval-scaled regres
sors, and specified interactions between them. Analysis of variance and multiple classification 
analysis are viewed as optional outputs which can be calculated from the basic output of the 
regression program. Analysis of variance decomposes the variance in the response into com
ponents for each effect; the ANOVA table is derived from the regression sums of squares from a 
sequence of regressions. Multiple classification analysis presents the effects of a categorical 
regressor from a regression which is additive between that factor and the other factors and 
covariates. 

We begin by presenting the elements of multiple regression; this is sketched rather briefly and 
assumes some prior knowledge on the part of the reader. We then discuss how categorical 
regressors are treated within the context of the method, by the creation of dummy variables. 
Finally, we discuss how to encorporate interactions in the regression. 

5 .2 Elements of Multiple Linear Regression 

The data for a regression analysis consist of values for each individual i of a response varia!J.le Yi 
and a set of k regressors, Xn, ... , Xik· Multiple linear regression calculates a fitted value Yi for 
each individual i which is a linear combination of the regressor values for that individual, that is 
takes the form 

A k 
Y. = b + L b· x .. 

1 0 j= 1 J "'1J ' 
(5.1) 

and is as close as possible to the observed value, Yi. Specifically, values of the intercept bQ and 
the slopes b 1, ... ,bk are chosen so that the fitted values minimize the sum of squared devia
tions 

or more generally, the weighted sum 

(5.2) 

for some chosen set of weights, Wj· Associated with this calculation is a decomposition of the 
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response Yi into the fi!!_ed value, Yi> and the residual, Yi - Yi. If Yi is measured as a deviation 
from the sample mean Y, we have 

A A 

(Yi - Yi) + (Yi - Y) 

" Squaring and summing over the (weighted) observations, the cross-product terms (Yi - Y) 
(Yi - Yi) sum to zero and we obtain the analysis of variance decomposition 

L (Y, .. Y)2 = ~ (Y .. Y)2 + ~ (Y, -Y.)2 
. I . I I 

(5.3) 
1 I 

= + 

That is, the total corrected sum of squares, SST, with N - 1 degrees of freedom, decomposes 
into the sum of squares for the regression, SSREG• with k degrees of freedom, and the residual 
sum of squares, SSRES• with N-k-1 degrees of freedom. The basic output of regression is the 
set of regression coefficients, b0 , bl• ... ,bk, and the ANOV A table based on the decom
position given in equation (5 .3). 

Note that according to equation (5.1), if l!..regressor Xr is increased by one unit with the 
other regre~ors held fixed, the fitted value Yi is increase~ by bj. Thus bj is interpreted as the 
effect on Y of increasing X· by one unit with the other regressors controlled. Sometimes 
regression coefficients are cJculated after standardizing the response and regressors to unit 
variance by dividing by their standard deviations. The resulting coefficients bj are called stand
ardized, and are related to the coefficients bj by the forumla 

where sd stands for standard deviation. The standardized coefficient bj estimates the increase in Y, 
measured in standard deviations of Y, obtained by increasing Xj by one standard deviation with 
the other regressors controlled. Standardized coefficients are labelled BETA in SPSS output. 

Other statistics commonly presented are multiple R2
, defined as the proportion of the variance 

explained by the regression, SSREG/SST, and the multiple R, the square root of this measure. 

Also, of interest are the F statistic for the regression sum of squares, that is, the ratio of the 
regression mean square to. the residual mean square, and standard errors for the regression co
efficients. Statistical tests and confidence intervals based on these quantities are available under 
the following statistical model. The response values Yi are assumed independently normally 
distributed with a mean linear in the X's, that is 

(5.4) 

and variance inversely proportional to the weight wi. If this model is true, then the overall 
statistical significance of the regression coefficients can be tested by comparing the F-statistic 
for the regression sum of squares with the tabulated F distribution with k and N-k-1 degrees of 
freedom. Also the significance of individual coefficients can be tested by comparing the in
dividual F values with the tabulated F distribution with 1 and N-k-1 degrees of freedom. 
Alternatively, 95% confidence intervals may be obtained by subtracting plus or minus two 
standard errors from the estimated coefficients. 

Table 5.1 gives the SPSS output for the regression of NCEB on YSFM and YSFM2
, discussed 

in Section 4.1 and plotted in Figure 4.1. The important quantities in this output can be identi
fied as follows: 
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TABLE 5 .1: Quadratic Regression of Parity on Years Since First Marriage 

V ARIABLE(S) ENTERED ON STEP NUMBER 2 . . YSFMSQ 

MULTIPLER 
RSQUARE 
ADJUSTED R SQUARE 
STANDARD ERROR 

.71630 

.51309 

.51294 
1.99389 

ANALYSIS OF VARIAN CE 
REGRESSION 
RESIDUAL 

. . . . . . . . . . . . . VARIABLES IN THE EQUATION ............. . 

VARIABLE 
YSFM 
YSFMSQ 
(CONSTANT) 

B BETA 
.3408267 1.12240 

-.3940649E-02 -.43242 
.1311261 

STDERRORB 
.00939 
.00028 

F 
1317.513 

195.559 

DF 
2. 

6807. 

SUM OF SQUARES 
28516.43333 
27061.93227 

MEAN SQUARE 
14258.21666 

3.97560 

F 
3586.42834 

........ VARIABLES NOT IN THE EQUATION ........ . 

VARIABLE BETAIN PARTIAL TOLERANCE F 

TABLE 5.2: Regression of Parity on Level of Education Represented as a Set of Dummies 

REGRESSIONS ON NCEB 

DEPENDENT VARIABLE . . NCEB 
V ARIABLE(S) ENTERED ON STEP NUMBER 1 . . PRIM 

RSEC 
HIGH 

MULTIPLER 
RSQUARE 

.32154 

.10339 

.10299 

ANALYSIS OF VARIAN CE 
REGRESSION 

ADJUSTED R SQUARE 
STANDARD ERROR 2.70589 

RESIDUAL 

............. VARIABLES IN THE EQUATION ............ . 

VARIABLE 
PRIM 
RSEC 
HIGH 
(CONSTANT) 

B 
-.9254233 
-1.909992 
-2.863278 

5.167174 

BETA 
-.15832 
-.28959 
-.34068 

STDERRORB 
.08700 
.09560 
.11361 

F 
113.151 
399.150 
635.143 

DF 
3. 

6806. 

SUM OF SQUARES 
5746.02924 

49832.33636 

VARIABLE LIST l 
REGRESSION LIST 1 

MEAN SQUARE 
1915.34308 

7.32182 

F 
261.59370 

. ....... VARIABLES NOT IN THE EQUATION ........ . 

VARIABLE 
YSFM 
MG09 
MG14 
MG19 
MG24 
M25P 

BETAIN 
.68196 

-.20829 
-.02162 

.12150 

.21234 
.38773 

PARTIAL 
.66669 

-.21796 
-.02281 

.12809 

.22231 

.39486 

TOLERANCE 
.85690 
.98180 
.99734 
.99659 
.98224 
.92989 

F 
5444.731 

339.397 
3.541 

113.515 
353. 794 

1256.992 



N = 6810, k = 2. 
Coefficients: 
Standard Errors: 
Standard Coefficients: 
ANOVA: 

bo = .1311, b1 = .3408, b2 = -.00394 
se(b1) = .00939, se (b2) = .00028 
bf= 1.122, b2 = -.4324 
SSREG == 28516.4, SSRES = 27061.9, R2 = .5131, R = .7163 

F - value for regression sum of squares= 3586.4 

5.3 Treatment of Factors in Regression 

5.3.1 A Single Factor 

Interval scaled covariates, such as YSFM and AGFM, are introduced directly into a regression 
without recording. On the other hand, the treatment of categorical variables, and the inter
pretation of the regression coefficients o'btained for them, requires more care. 

We first consider a simple regression on a dichotomous variable, that is, a variable with two 
categories. For example, suppose that the response Yi is the parity for individual i and Xi is a 
variable taking the value one for women with formal education and zero otherwise. The fitting 
equation (5.1), specifies that predicted mean parity Yi takes the form 

(5.5) 

where b 1 is the slope and bo is the intercept. Hence the predicted mean parities for women 
with no education and for women with formal education are obtained by substituting Xi = 0 
and Xi= 1 respectively in equation (5 .5): 

(5.6) 

Hence bo is the predicted mean for individuals with Xi= 0 and bl is the difference in predicted 
means between individuals with Xi = 1 (that is, educated women) and individuals with Xi= 0 
(that is, uneducated women). Note that the original interpretation of regression coefficients still 
remains. The slope b 1 represents the increase in the fitted mean obtained by changing X = 0 to 
X = 1, which is equivalent to switching from the uneducated to the educated group. 

It comes as no surprise that in practice the fitted values (5~6) calculated by regression to mini
mize (5.2) are simply the weighted sample mean parities for the two groups. That is, 

where Yj is the (weighted) mean parity for women with Xi = j, G = 0,1). Hence in a sense the 
regression is equivalent to a simple cross-tabulation of the mean parities for the two groups. 

Now consider a factor with k>2 groups. For example, let us consider the factor LVED with k = 
4 groups, NO EDUCATION, 1-5 YEARS, 6-9 YEARS and 10 OR MORE YEARS. Suppose that 
these levels are coded 1 to 4 and the variable introduced into the regression as a covariate. Then 
the regression model wi!l predict means for the four groups which are equally spaced. That is, if 
the intercept and slope are bo and bl respectively, the predicted means for the four groups are 
bo + b 1, b0 + 2b1 , b0 + 3b1 and b0 + 4b 1, and thus adjacent groups all differ by the quantity b 1. 
This procedure effectively assumes an ordering between the categories, which is justified for 
this variable but does not make sense for unordered factors such as, say, Religion. The imposit
ion of equal spacing between the category means is often less desirable, and implies that the 
regression is not analogous to the cross-tabulation of mean parities, as was the case for a binary 
factor. We now give an alternative treatment of factors which does correspond to cross-tabu
lation in the simple case when a single factor is included in the regression. 
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TABLE 5.3: Regression of Parity on Marital Duration and Level of Education, Represented as Sets of Dummy Variables 

REGRESSIONS ON NCEB VARIABLE LIST l 

DEPENDENT VARIABLE . . NCEB 
V ARIABLE(S) ENTERED ON STEP NUMBER 2 . . M25P 

MG09 
MG14 
MG19 
MG24 

MULTIPLER 
RSQUARE 

.70505 

.49710 

.49650 

ANALYSIS OF VARIANCE 
REGRESSION 

ADJUSTED R SQUARE 
STANDARD ERROR 2.02726 

RESIDUAL 

............. VARIABLES IN THE EQUATION ............ . 

VARIABLE 
PRIM 
RSEC 
HIGH 
M25P 
MG09 
MG14 
MG19 
MG24 
(CONSTANT) 

B 
-.2380297 
-.4495334 
-.5951281 

5.511676 
1.465360 
2.742686 
3.796765 
4.695667 
1.311514 

BETA 
-.04072 
-.06816 
-.07081 

.74246 

.19737 

.35560 

.48123 

.55494 

STDERRORB 
.06604 
.07456 
.09067 
.08596 
.08122 
.08410 
.08602 
.09138 

F 
12.991 
36.350 
43.078 

4111.369 
325.517 

1063.598 
1948.337 
2640.312 

DF 
8. 

6801. 

SUM OF SQUARES 
27627. 74499 
27950.62061 

REGRESSION LIST 1 

MEAN SQUARE 
3453.46812 

4.10978 

F 
840.30466 

. ....... VARIABLES NOT IN THE EQUATION ........ . 

VARIABLE BETAIN PARTIAL TOLERANCE F 
221.833 YSFM .64841 .17774 .03779 



For a k-category variable, one category is selected and called the reference category. For each 
of the (k-1) other categories, a dummy or indicator variable is defined, taking value one for 
individuals falling in that category and zero otherwise. Here we choose NO SCHOOLING as the 
reference category, and define k-1 = 3 variables 

PRIM= { 
1, 
0, 

RSEC= { 0

1 

1-5 Years Education ; 
Otherwise 

,6-9 Years of Education 
,Otherwise 

{ 
1 ,10 or More Years of Education 

HIGH= 0 ,Otherwise 

The factor is represented in the regression by the set of dummy variables defined thus, in this 
case PRIM, RSEC and HIGH. 

To see the effect of this, note that the fitted values from this regression are 
,.. 
Yi = ho + bl PRIMi + h2RSECi + b3HIGI\ , 

where PRIMi, RSECi and HIGHi are the values of PRIM, RSEC and HIGH for respondent i. For 
individuals with no education, PRIMi = RSECi = HIGHi = 0. Hence the predicted mean is 

"' (Yi ILVED = 1) = h0, 

the intercept of the regression. For individuals with 1-5 years education, PRIM= 1 and RSEC = 
HIGH= 0. Hence the predicted mean is 

,.. 
(Yi ILVED = 2) = ho+ b 1, 

Similarly for the other categories of education we obtain predicted means 

Hence the intercept ho is the fitted mean for the reference category, and the slope bi is the. 
difference in the fitted mean between category j+l and the reference category. These propert
ies are of central importance in the interpretation of regressions with factors. 

Once again, the fitted mean obtained from the regression are simply the (weighted) sample 
means within each category of the factor, and hence regression is here a rather unwieldy way 
of obtaining the cross-classification of means. 

Table 5 .2 gives the results of the regression of NCEB on the three dummy variables PRIM, 
RSEC and HIGH. The cross-tabulation of mean parity by Level of Education, given in Table 
2.1.a), is reconstructed from the regression coefficients as follows: 

ho = 5.167, 
ho+ h1 = 5.167 - o.925 
ho+ h2 5.167 - 1.910 = 
ho+ h3 = 5.167 - 2.863 

4.242, 
3.257, 
2.304. 

Note that the ANOVA table corresponds to the analysis of variance of NCEB on LVED, given 
in Table 3 .3. The two tables differ only because of rounding error. This correspondence is 
inevitable, because both analyses are based on the same fitted model. 
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5.3.2 Two or More Factors 

Now suppose we add another factor to the regression. Following the procedure in Chapter 3, 
we include the factor marital duration with six levels, MGP6. As with LVED, this is represented 
in the regression by a set of dummy variables. A reference category, 0-4 years, is chosen, and 
dummy variables are defined for the other five year marriage groups, MG09, MG 14, MG 19, 
MG24 and M25P. If these are added to the regression equation, we obtain the output given in 
Table 5.3. The regression model here is 

,... 
Y = bo +bl PRIM+ b2 RSEC + b3 HIGH+ b4 MG09 + b5 MG14 + b6 MG19 

+ b7 MG24 + b8 M25P . (5.7) 

Substituting the coefficients in Table 5 .3 we obtain the equation 

" Y = 1.31 - .24PRIM - .45 RSEC - .60 HIGH 

+ 1.47 MG09 + 2.74 MG14 + 3.80 MG19 + 4.70 MG24 + 5.51 M25P (5.8) 

" From this expression we can derive fitted means for each level of LVED and MGP6. Let Yjk 
denote the fitted mean for respondents with LVED = j and MGP6 = k. The reference categories 
correspond to no education, LVED = 1, and 0-4 years since first marriage, MGP6 = 1. Hence 
substituting zero for all the variables in (5.8), we obtain the fitted value for women with no 
education married less than five years: · 

Y11 = 1.31 . 

To obtain the fitted value for women with 6-9 years of education married 15-19 years, we set 
RSEC =MG 19 = 1 and the other variables equal to zero, obtaining 

y 34 = 1.31 . .45 + 3.80 = 4.66 

Other fitted values are derived in a similar manner. The fitted values obtained are identical to 
those obtained from the multiple classification analysis of NCEB with factors LVED and 
MGP6, given in Table 2.2. This can be verified by comparing the values of Y 11 and Y 34 with 
the corresponding values in that table. The correspondence arises because both models fit the 
same additive model for the two factors. To demonstrate it rigorously, note that the regression 
equation (5.7) can be re-written in the same form as the MCA model, 

" "" I\ ;i... 

yjk = µ + °'i + {3 k ' 1 < j < 4, 1 < k < 6 

by setting 

The coefficients in (5 .7) have the interpretation as deviations between the dummy variable 
category and the reference category, adjusted for the other factor. For example, b1 = -.24 
estimates the difference in mean parity between respondents with 1-5 years of schooling and 
respondents with no schooling, adjusted for marital duration. Thus the adjusted effects of edu
cation, expressed as deviations from the NO SCHOOLING group, are simply bi = -.24, b2 = 
-.45 and b3 = -.60. (Cf Table 2.4). 

Suppose we wish to express these effects as deviations from the overall mean,µ= 3.84, as in the 
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MCA table. If d 1 is the deviation for the NO SCHOOLING group, then the deviations for the 
other groups are d l + b 1, d 1 + b2 and d 1 + b3 respectively. To calculate d 1, we exploit the fact 
that the average over the distribution of the factor in the sample of the category deviations is 
zero. That is, if p j is the (weighted) proportion of the sample in category j, then 

4 

o = ~ PJ· d J. = d1 + p2 b1 + p3 b2 + p4 b3 , j=l 

and hence d1 = - p2 b1 · P3 b2 - P4 b3. 

If the means of the regressor variables are requested as part of the regression output, then these 
include the values of p 2, P3 and p4. For example, the mean of the dummy variable PRIM is 
simply p 2• the (weighted) proportion of individuals with primary education. In SPSS the 
means are obtained by specifying 

STATISTICS 2 

after the regression card. From this output, we obtain the weighted proportions. 

P2 = .3944, p3 = .2502, p4 = .1333. 

Hence the deviation for the NO SCHOOLING category is 

d1 = -.3944 (-.24) - .2502 (-.45) - .1333 (-.60) = .29, 

and hence d 1 = .29 , d2 = .05 , d3 = .16 , d4 = -.31. These are identical to the adjusted devia
tions of LVED from multiple classification analysis, as given in Table 3.4. Finally, adjusted 
means for each category can be calculated by adding the overall mean to each deviation di. 

It remains to draw analogies between the analyses of variance in Table 5.3 and Tables 3.7 and 
3.8. Since the regression fits the additive model [MGP6 + LVED], the regression 8Um of squares 
(27627.7) corresponds to the sum of squares for the main effects in Table 3.7 and 3.8, the 
difference being rounding error. In the notation of Section 3, this is SSMGP6 + LVED· The 
unadjusted sum of squares for LVED, SSLVED' is given by the regression sum of squares from 
Table 5.2, viz 5746.0. Hence the amount added by introducing MGP6 is 

SSMGP6ILVED = SSMGP6+LVED - SSLVED = 27627.7-5746.0 = 21881.7, 

which corresponds to the adjusted sum of squares for MGP6 in Table 3.7 (21880.8). The un
adjusted sum of squares for MGP6 and the adjusted sum of squares for LVED cannot be ob
tained from th~ existing regressions, requiring a further regression of NCEB on MGP6 alone. 
Also the interaction sum of squares cannot be found without fitting a regression including the 
interactions between the factors. This involves calculating all the product terms between the 
dummy variables in each group, 

PRIMMG09 = PRIMxMG09, PRIMMG14 = PRIMxMG14, ... , 

HIGHM25P = HIGH x M25P 

and adding them to the regression. The addition to the regression sum of squares when the 
terms are added will then be SSLVED.MGP6 = 206.96. 

This reconstruction of the ANOV A table by a regression program is not recommended in 
practice, since forming the product terms is tedious and the calculations are automatically 
presented in the desired form by the ANOVA program*. However it is instructive, and illustrat-

* Not all ANOVA programs, however, present sufficient output of the effects of the model, and here 
regression can have an advantage. 
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TABLE 5.4: Analysis of Covariance Using Regression Program. Regression of Parity on Years Since First Marriage and Level of Education 
Represented as a Set of Dummy Variables 

REGRESSIONS ON NCEB 

DEPENDENT VARIABLE . . NCEB 
V ARIABLE(S) ENTERED ON STEP NUMBER 1 . . YSFM 

PRIM 
RSEC 
HIGH 

MULTIPLER 
RSQUARE 

.70846 

.50191 

.50162 

ANALYSIS OF VARIAN CE 
REGRESSION 

ADJUSTED R SQUARE 
STANDARD ERROR 2.01694 

RESIDUAL 

............. VARIABLES IN THE EQUATION ............ . 

VARIABLE B BETA STDERRORR F 
YSFM .2071711 .68196 .00281 5444.731 
PRIM -.1666822 -.02852 .06566 6.445 
RSEC -.3788385 -.05744 .07422 26.054 
HIGH -.5564369 -.06621 .09027 37.995 
(CONSTANT) 1.135904 

DP 
4. 

6805. 

SUM OF SQUARES 
27895.38699 
27682.97861 

VARIABLE LIST 1 
REGRESSION LIST 2 

MEAN SQUARE 
6973.84675 

4.06804 

F 
1714.30350 

. ....... VARIABLES NOT IN THE EQUATION ........ . 

VARIABLE BETA IN PARTIAL TOLERANCE F 
YSFMSQ -.43582 -.16824 .07422 198.186 



es the sort of calculations that are done to construct the analysis of variance. The main advan
tages of the regression program occur when interval-scaled covariates are present, as discussed 
in the next section. 

5 .4 Covariates and Factors 

If the dummy variables representing the factor MGP6 are replaced by the interval-scaled vari
able YSFM in the regression, we obtain the analysis of covariance model, 4.4. The addition of 
the quadratic term YSFMSQ gives the fit for the model 4.5. Output from these regressions are 
given in Tables 5 .4 and 5 .5, anu corresponds to the output obtained from the ANOV A program 
given in Tables 4.1 to 4.4. The adjusted effects of education are again contained in the regres
sion coefficients for PRIM, RSEC and HIGH. The coefficients for YSFM and YSFMSQ, on the 
other hand, give the effects for marital duration adjusted for education. 

The F-statistics for the individual coefficients deserve some comment. In Table 5.4, the F
statistic. for YSFM (5444. 7) indicates the obvious fact that the adjusted linear effect of marital 
duration is highly significant. The standard errors and F-statistics for the dummy variables 
estimate the precision with which the corresponding effects are measured, and are not without 
interest. However, note that for variables with more than two categories the set of values pre
sented depends on the choice of reference category. Also the F-values of pairwise differences do 
not present a reliable picture of the overall significance of the factor. It is possible for an 
isolated pairwise difference to be significant even through a simultaneous te_st for equality of 
the category means is not significant. Conversely, a simultaneous test may yield a significant 
result even though none of the pairwise differences are significant for the choice of reference 
category adopted. A sensible strategy here is to test for equality of the category means, and to 
avoid interpreting individual differences unless this test is significant. The simultaneous test is 
based on the change in the regression sum of squares when the factor, represented by its set of 
dummies, is entered. Specifically, let SSadded and dfadded be the sum of squares and degrees 
of freedom added by the factor, and let msREs and dfRES be the residual mean square and 
residual degrees of freedom after the factor is added. Then the statistic 

ssadded/dfadded 
F= 

ms RES 

is compared with an F distribution on dfadded and dfRES degrees of freedom. The test is 
illustrated in Section 5 .6. 

Finally, in Table 5.5 the F-statistic for YSFMSQ is 198.19, again highly significant, indicating 
that it improves the fit and is worthy of inclusion. 

5 .5 Controlling the Order of Adjustment by Stepwise Regression 

In the ANOV A program, covariates are controlled before or after the factors, according to an 
option specified by the user. It is not possible to interleave covariates and factors. A more 
flexible way of ordering controls is to fit a set of regressions using a stepwise regression pro
gram. The basic approach is illustrated with an application from the WFS Illustrative Analysis 
on Socio-Economic Determinants of Contraceptive Use in Thailand (Cleland, Llttle, and 
Pitaktepsombati, 1979). 

The response variable is a binary variable indicating current use of contraception (CUSE), 
taking values one for users and zero for non-users. The regressors consisted of two interval 
scaled variables, respondent's age at survey (AGE) and a standard of living index (STANDLIV); 
one binary factor, type of place of residence (TYPE OF PLACE) taking values one for urban 
and zero for rural; and four factors with more than two categories, number of living children 
(LIVCHILD), with nine categories, region (REGION), with five categories, husband's edu
cation (HEDUC), with four categories, and husband's occupation (HOCCUP), with five cate-
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TABLE 5 .5: Regression of Parity on Linear and Quadratic Terms of Years Since First Marriage and Level of Education Represented as a Set of 
Dummy Variables 

REGRESSIONS ON NCEB 

DEPENDENT VARIABLE . . NCEB 
' V ARIABLE(S) ENTERED ON STEP NUMBER 2 . . YSFMSQ 

MULTIPLER 
RSQUARE 
ADJUSTED R SQUARE 
STANDARD ERROR 

.71834 

. 51601 

.51565 
1.98834 

ANALYSIS OF VARIANCE 
REGRESSION 
RESIDUAL 

. . . . . . . . . . . . . VARIABLES IN THE EQUATION ............. . 

VARIABLE 

YSFM 
PRIM 
RSEC 
HIGH 
YSFMSQ 
(CONSTANT) 

B 

.3349421 
-.2129170 
-.4020727 
-.5188914 
-.3977706E-02 

.4882426 

BETA 

1.10256 
-.03643 
-.06096 
-.06174 
-.43582 

ALL VARIABLES ARE IN THE EQUATION 

STDERRORB 

.00949 

.06481 

.07319 

.08903 

.00028 

F 

1246.024 
10.793 
30.182 
53.967 

198.186 

DF 
5 . 

6804. 

SUM OF SQUARES 
28678.90879 
26899.45681 

VARIABLE LIST 1 
REGRESSION LIST 2 

MEAN SQUARE 
5735.78176 

3.95348 

F 
1450.81960 

........ VARIABLES NOT IN THE EQUATION ........ . 

VARIABLE BETA IN PARTIAL TOLERANCE F 



gories. An analysis of particular interest concerned the effect on the regional differentials of 
adjusting for the other regressors. The analysis was based on the following set of regressions. 

(1) CUSE ON REGION 
(2) CUSE ON REGION, LIVCHILD 
(3) CUSE ON REGION, LIVCHILD, AGE 
(4) CUSE ON REGION, LIVCHILD, AGE, TYPE OF PLACE. 
(5) CUSE ON REGION, LIVCHILD, AGE, TYPE OF PLACE, HEDUC 
(6) CUSE ON REGION, LIVCHILD, AGE, TYPE OF PLACE, HEDUC, HOCCUP 
(7) CUSE ON REGION, LIVCHILD, AGE, TYPE OF PLACE,HEDUC,HOCCUP, STANDLIV. 

The aim was to monitor the effects of region at each step and hence determine the impact of 
the correlated factors and covariates. The factors were represented by blocks of dummy vari
ables, as in the previous section. The factor REGION is introduced first so that the first regres
sion gives the unadjusted regional means. The order of introduction of the other variables is 
somewhat arbitrary and is discussed in more detail in the report of the analysis. Strategies for 
determining the order of adjustment are reviewed in Chapter 6 of this paper. 

These regressions can be carried out in a stepwise regression program in a single run, by forcing 
the covariates or factors into the equation in the following order: 

REGION, LIVCHILD, AGE, TYPE OF PLACE, HEDUC, HOCCUP, STANDLIV. 

In SPSS this is achieved by giving the variables in each block even priority levels, 14, 12, 10, 8, 
6, 4, 2, respectively. This use of stepwise regression should be contrasted with the more familiar 
form where the regressor included or rejected at each step is determined by levels of significance. 
This is not appropriate here, since the set of dummies for a factor needs to be included or 
excluded as a block. 

From the resulting output, the coefficients for REGION are identified and converted to adjust
ed category means using the procedure of the previous section. The resulting summary of the 

TABLE 5.6: Per Cent of Currently Married, Non-Pregnant, "Fecund" Women Currently Using 
An Efficient Method, by Region. Adjusted for Indicated Variables by Linear Regression 

Region of Residence 

Step Controls Bangkok North Northeast South Central Mean AddedR 

1 54.9 52.8 32.5 18.9 53.7 42.6 .253 
2 LIV CHILD 55.6 53.4 31.8 19.1 53.6 42.6 .259 
3 LIVCHILD, AGE 56.2 53.8 31.2 19.1 53.9 42.6 .263 
4 LIVCHILD, AGE, 44.4 54.6 32.4 19.2 54.8 42.6 .253 

TYPE OF PLACE 
5 LIVCHILD, AGE, 43.5 55.3 32.2 21.1 53.5 42.6 .245 

TYPE OF PLACE, 
HEDUC 

6 LIVCHILD, AGE, 43.2 54.9 33.5 21.5 51.8 42.6 .221 
TYPE OF PLACE, 
HEDUC,HOCCUP 

7 LIVCHILD, AGE, 40.1 55.0 34.9 22.1 50.1 42.6 .208 
TYPE OF PLACE, 
HEDUC, HOCCUP, 
STANDLIV 

SAMPLE SIZE = 2141 
PER CENT DISTRIBUTION = 6.7 25.8 35.3 9.9 22.3 

Source: Little, Cleland and Pitaktepsombati (1979). 
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effects of region is presented in Table 5 .6. For a dichotomous response, the fitted means are 
interpreted as the proportion taking value 1, that is in this case the proportion currently using 
contraception. In the table these proportions are converted to percentages by multiplying by 
100. The first ro'w of the table is unadjusted, and is simply a cross-tabulation of the regional 
means. As variables are introduced, the adjusted means tend to converge towards the overall 
mean of 42.6 indicating the effect of the composition of other variables on the regional differ
entials. However, even after all the other controls are included, the effects of region are still 
large and statistically significant, suggesting that other unmeasured factors are contributing to 
the regional disparity of contraceptive use. A fuller interpretation of the table is given in the 
original paper. 

The last column of Table 5.6 deserves comment. The proportion of additional variance explain
ed by region at each step is found as 

Added R
2 

= (SSREGION + ov " SSoy) I SST 

where SSoy is the sum of squares for the other variables, excluding region, SSREGION + OV 
is the sum of squares for region and the other variables, and SST is the total sum of squares 
about the mean. The square root of this measure is presented in the last column of the table; it 
is equivalent to the BET A measure in Multiple Classification Analysis. According to this meas
ure, the effects of Region are reduced from .253 to .208 by the inclusion of the other controls, 
a reduction of some 20%. Such summary conclusions are of some interest, but cannot replace 
the detailed information in the body of the table. 

5.6 Interactions Between Factors and Covariates 

The last example of analysis of covariance in Section 4.2 involved the weighted regression of 
parity divided by marital duration (P/D) on factors LVED and HEDL and covariates consisting 
of linear and quadratic terms in years since first marriage (YSFM, YSFMSQ) and age at first 
marriage (AGFM, AGFMSQ), and the interaction formed by the product of the linear terms 
(YSFMAGFM). In that section it was pointed out that interactions between covariates and 
factors could not be modelled within the ANOVA procedure. Ii1 this section we model these 
interactions using the more general REGRESSION program. 

For simplicity we shall restrict ourselves to one factor, LVED, represented in the regression by 
'the three dummy variables PRIM, RSEC and HIGH, as before. The covariates for marital dura
tion and age at first marriage are defined as above, that is 

YSFM,YSFMSQ,AGFM,AGFMSQ,YSFM.AGFM. 

Variables for the interactions between factors and covariates are defined by forming products 
of the covariates and dummy variables. The following are defined: 

LVED.YSFM, LVED.YSFMSQ, LVED.AGFM, LVED.AGFMSQ, LVED.AGFM.YSFM. 

Each of these terms involves three variables; for example, LVED.YSFM is represented by the 
three products PRIM x YSFM, RSEC x YSFM, and HIGH x YSFM. The list of interactions 
thus formed is not exhaustive, since it does not include three way interactions involving LVED 
and the quadratics YSFMSQ or AGFMSQ. 

The data are analyzed by a stepwise regression, with variables added in the following steps: 

1. LVED; 2. YSFM, YSFMSQ; 3. AGFM, AGFMSQ; 4. YSFM.AGFM; 

5. LVED.YSFM; 6. LVED.YSFMSQ; 7. LVED.AGFM; 8. LVED.AGFMSQ; 

9. LVED.YSFM.AGFM. 
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TABLE 5. 7: Analysis of Variance of Regression of PBYD with Interactions Added Hierarchically 

(a) (b) (c) (d) (e) (f) (g) {h} G) (k) (1) (m) 

Step Variables Added Regression Residual R2 Added at Step 

I Sum of Squares I DF 11 Sum of Squares I DF I Mean Square I I Sum of Squares I DF I R2 I F 

1 LVED 6.19 3 11,230 6556 1.713 .0006 6.19 3 .0006 1.205 
2 YSFM, YSFMSQ 1169.55 5 10,066 6554 1.536 .1041 1163.36 2 .1035 395.16 
3 AGFM,AGFMSQ 1509.23 7 9,726 6552 1.485 .1343 339.68 2 .0302 115.38 
4 YSFM.AGFM 1549.91 8 9,686 6551 1.479 .1369 40.68 l .0026 27.64 
5 LVED.YSFM 1564.34 11 9,671 6548 1.477 .1392 14.43 3 .0023 3.27 
6 LVED.YSFMSQ 1596.02 14 9,640 6545 1.473 .1421 31.68 3 .0029 7.17 
7 LVED.AGFM 1602.89 17 9,633 6542 1.472 .1427 6.87 3 .0006 L56 
8 LVED.AGFMSQ 1604.79 20 9,631 6539 1.473 .1428 1.90 3 .0001 .43 
9 LVED.YSFM.AGFM 1614.58 23 9,621 6536 1.472 .1437 9.79 3 .0009 2.22 
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The analysis of variance from the regression at each step is presented in columns (c) to (g) 
of Table 5. 7. The regression sum of squares and degrees of freedom appear in columns ( c) and 
( d), and the sum of squares, degrees of freedom and mean square for the residual are given in 
columns (e), (f) and (g). From these values, the sum of squares and degrees of freedom added 
at each step can be derived by subtraction, and are given in columns G) and (k). For example, 
the sum of squares added by LVED.YSFM at Step 5 is 1564.34 - 1549.91 = 14.43. Other 
statistics presented in the table are the regression R2 , in column (h), and the R2 added at each 
step (or partial R2

), in column (1). The final column gives the F-statistic for the net effect of 
each term when it is added to the regression, obtained by dividing the mean square added at 
each step by the residual mean square 1.472 at the final step, viz, Step 9. This test differs 
slightly from that described in Section 5.4, in that the residual mean square is taken from the 
final step rather from the step at which the variable is added. Both tests are valid; in the chosen 
method the residual mean square is the same for the tests at each step, and thus the F-statistics 
are more directly comparable. 

The following points emerge from this summary table: 

1. The percentage of variance explained by all the variables is 14.4%. This is less than that 
obtained by regressions with parity as response, but the comparison is misleading: the 
response PBY D encorporates a partial control for marital duration in its definition, and 
hence a large explanatory factor in regressions on NCEB is discounted by the choice of 
response. 

2. The introduction of LVED at Step 1 is not significant. However, the interpretation of 
differentials in PBYD is not clear unless these effects are adjusted for marital duration. 
Although this is not evident from the table, educational differentials emerge after Step 
2, when this control is implemented. 

3. The demographic controls YSFM, YSFMSQ, AGFM, AGFMSQ and YSFM.AGFM are 
highly significant, from Steps 3, 4 and 5. Inspection of the individual coefficients indicat
es that the quadratics YSFMSQ and AGFMSQ add significantly to the fit. 

4. Significant interactions between education and marital duration emerge at Steps 5 and 6. 
Taken together, LVED.YSFM and LVED.YSFMSQ add a mean square of 

(14.4 + 31.7) I 6 = 7.69, 

compared with the residual mean square of 1.472. The nature of these interactions are 
described below. 

5. The last three steps of the regression, taken together, do not add significantly to the fit, 
although the three-way interaction yields an F-value of 2.22. We shall not interpret these 
effects in subsequent analysis. 

We now concentrate on the adjusted effects of educational level. These ·are presented in Table 
5 .8 for the first six steps of the stepwise regression, in the form of deviations from the mean. 
The first four steps involve models which are additive with respect to LVED (that is, involve no 
interactions with LVED). Thus the effects of education are found from the means and regres
sion coefficients for the dummy variables PRIM, RSEC and HIGH, using the method described 
in Section 5.3.2. 

Steps 5 and 6 include interactions between education and marital duration, and as a result the 
effects of education depend on the level of marital duration. The adjusted effect for each 
education category is obtained by subtracting two functions of marital duration and age at 

'marriage, the fitted mean for the whole group obtained by substituting mean values for PRIM, 
RSEC and HIGH in the equation, and the fitted mean for the education category, obtained by 
substituting one or zero for the dummy variables as appropriate. For example, in Step 5 the 
fitted equation is: 
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TABLE 5.8: Effects of Education from Regression of PBYD Including Interactions, Expressed 
as Deviations From Mean 

Variables No 1-5 6-9 10 or 
Step Added Schooling Years Years More Years 

1 LVED -.031 -.001 .016 .089 
2 YSFM, YSFMSQ .128 -.022 -.119 -.301 
3 AGFM,AGFMSQ .083 -.008 -.088 -.039 
4 YSFM.AGFM .083 -.002 -.087 -.074 

5 YSFM.LVED -.011 -.037 -.009 .274 
+.0048 YSFM +.0024 YSFM -.0034 YSFM -.0230 YSFM 

6 YSFMSQ.LVED -.310 -.096 .320 .883 
+.0403 YSFM +.0142 YSFM

2 
-.0427 YSFM -.1208 YSFM 

-.0009 YSFM2 -.0004 YSFM +.0010 YSFM2 +.0031 YSFM2 

FIGURE 5.1 : Fitted Effects of Education as Quadratic Functions of Marital Duration, from 
Step 6 of Regression 
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;, 

Y = - .026 PRIM + .002 RSEC + .285 HIGH - .0024 YSFM.PRIM - .0081 YSFM.RSEC 

-.0278 YSFM.HIGH + o.t, 

where o.t. represents other .terms not involving PRIM, RSEC or HIGH, which cancel in the 
subtraction. The effect for the 1-5 Years Schooling Group is obtained by subtracting the fitted 
mean with PRIM = PRIM, RSEC = RSEC and HIGH = HIGH from the fitted mean with PRIM = 
1, RSEC = HIGH= 0. Substituting the observed means PRIM= .425, RSEC = .206 and HIGH= 
.075, we obtain for the adjusted effect 

{-.026 - .0024 YSFM + o.t.} 

- {(.026) (.425) + (.002) (.206) + (.285) (.075) + YSFM [(-.0024) (.425) 

+ (-.0081) (.206) + (-.278) (.075)] + o.t.} 

= - .037 + .0024 YSFM, 

as seen in the table. The calculation in effect repeats the procedure for calculating the main 
effects of education, described in Section 5.3.2, for the interactions terms which include 
education. 

We conclude by giving a substantive interpretation of Table 5.8. The unadjusted effects in Step 
1 are relatively small and of limited substantive interest. When marital duration is controlled 
(Step 2), we note that the NO SCHOOLING group has the largest adjusted fertility tempo P/D, 
and the highest education group has the smallest, differing from the no schooling group by 
nearly one half a birth per ten years marriage duration. The intermediate education groups rank 
in the expected way. In Steps 3 and 4, we learn that a large part of the differential in fertility 
tempo is attributable to the quadratic effect of Age at Marriage, namely that the more educated 
women marry later and hence have a lower average tempo of fertility. Finally, Steps 5 and 6 
indicate that the residual effects of education after adjusting for age at marriage and marital 
duration are specific to marital duration. Step 5 shows that recent marriage cohorts, the tempo 
of fertility is positively associated with education. Thereafter the differentials decline with 
marital duration, and for cohorts married ten or more years the pattern is reversed. Step 6 
estimates quadratic relationships between the effects and marital duration. Effects from this 
step are plotted in Figure 5 .1, which shows very clearly the cross-over between low and high 
durations of marriage. 

The interpretation of these results is not easy for the present example since fertility in Sri 
Lanka is declining, and it is not possible to distinguish life cycle effects and trends in fertility. 
The separation of these components requires alternative measures of fertility, such as are used 
in the Sri Lanka illustrative analysis of cumulative fertility (Little and Perera, 1980). Neverthe
less, the example does illustrate the formation and interpretation of interactions within a 
regression model. 
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6. STRATEGIES FOR DETERMINING THE CHOICE OF 
VARIABLES IN THE REGRESSION 

6.1 Introduction 

We have presented a flexible collection of methods for calculating adjusted effects of interval
scaled and categorical regressors, and for assessing their statistical significance. Given a set of 
regressors*, the most important issue facing the analyst applying these techniques systematic
ally to data is which variables to control when calculating the effects of a regressor, and how to 
interpret the results substantively. A brief introduction to this topic is presented in this final 
chapter. Parts of the discussion are based on Llttle (1979). 

Two extreme strategies encountered in the literature are: 

a) to calculate the effects of all the regressors unadjusted, in the form of one-way cross
tabulations of means or univariate regressions, and 

b) to calculate the effects of each variable adjusted for all other regressors in the study, 
using a single regression equation with all variables included. 

The former method is clearly unsatisfactory, as noted in the early chapters of this bulletin. The 
latter method is not uncommon, but can lead to considerable problems when highly associated 
regressors are included. For example, it is quite possible that the adjusted effects of husband's 
and respondent's education are not significant when both are included in the regression, even 
though the effect of education as measured by either one alone is highly significant.Suppress
ing effects of this type are described in Gordon (1968). 

A more illuminating approach is to consider what adjusted effects represent in the context of a 
causal ordering between the variables. 

The definition of an adjusted effect is at first glance straightforward - it represents the average 
effect on the regressand of increasing the regressor by one unit, holding other variables in the 
regression fixed. Such statements have a descriptive value for the population under study, buf 
they should not be regarded as a basis for causal inference. That is, it does not follow that if a 
policy maker was in fact able to create conditions in the population which led to an increase in 
the average value of a regressor, holding other regressors constant, then this increase would 
necessarily result in the increase in the mean regressand predicted by the model. 

The potential absurdity of causal inferences of this kind is easily demonstrated. For example, 
the relationship between fertility and contraceptive use may be explored by a regression of 
number of children ever born on current use of contraception, adjusted for demographic and 
socio-economic controls according to taste. For many developing countries the resulting adjust
ed effect of contraceptive use is positive, that is the mean parity increases with level of use. The 
reason is that at early stages of a family planning program contraceptive use tends to be con
centrated among women with large families. The implied causal inference is that the result of 
increasing the level of contraceptive use is to increase fertility, which is clearly absurd. Correct 
causal inferences about the relationship between contraceptive use and fertility require infor
mation about the timing of births and contraception for individuals in the sample. 

A more subtle example concerns the relationship between education and fertility. Many coun
tries show a negative relationship between level of formal schooling and fertility, after adjust
ment for controls for exposure to risk of childbearing. The extent to which this observed 
relationship can be used to infer than an emphasis on increasing education facilities will yield 
the predicted fertility decline is questionable. In the past education might be restricted to an 
elite group, and as education spreads, it affects different groups of the population. It is not 

* The choice of regressors to be included in the study is an important issue which lies outside the scope 
of this technical bulletin. 
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necessarily true that the relationship between education and fertility will be the same for 
different cohorts of the population. It is not clear that formal schooling is a factor which 
directly affects the level of fertility, since the observed relationship between formal education 
and fertility could be caused by other factors which are associated with formal schooling, but 
would not be affected by an increase in the level of formal schooling. Finally, the effect of 
increasing education would presumably depend on the specific policies introduced to bring 
about the change. 

Despite the evident difficulty in making direct causal inferences from the data, any analysis 
which goes beyond simple reporting of the means of variables is presumably trying to provide 
information which is ultimately causal in nature. Furthermore, causal analysis provides a 
valuable conceptual framework for deciding the specific question of which variables to control 
when analysing the effect of a variable in a regression. The most important aspects of this 
framework are now presented. 

6.2 The Causal Ordering and Total Effects 

We suppose that the regressor and regressand variables can be placed in a causal ordering 

(2.1) 

such that changes in the values of any variable can affect a variable later in the chain, but do 
not affect variables earlier in the chain. Two points require special emphasis here: 

a) The causal ordering cannot be decided by an empirical analysis of the data, but must be 
based on prior theoretical knowledge of the population; 

b) The specification of a causal ordering in effect rules out the possibility of circular causat
ion between variables, where one variable both affects and is affected by another variable 
in the series. In the examples, we shall proceed under the assumption that at least a pre
dominant direct of causal ordering can be established. In cases where this is not possible 
the interpretation of the data is much more difficult, and more complex analytical 
techniques than those discussed are required to disentangle relationships between the 
variables. See, for example, the non-recursive models discussed by Hood and Koopmans 
(1953). 

Two general rules stem from this causal ordering: 

Rule 1 The regressand variable Y, must be the last variable in the causal chain. In other words, 
variables causally posterior to the response should not be included. 

Rule 2 In assessing the effect of any regressor variable X on a response, Y, all variables causal
ly prior to X should be controlled. 

To clarify these rules, consider a particular regressor variable X. We can represent the position 
of X in the causal chain as follows: 

xb-x-xa-Y, 

where Xb are the set of regressor variables prior to X, Xa are the set of regressor variables 
posterior to X, and the response Y is by rule l the last variable in the chain. Then Rule 2 states 
that the variables Xb should be controlled when calculating the effect of X on Y. 

Rule 2 does not specify whether the regressor variables posterior to X, Xa, should be con
trolled. If none of these are controlled, the resulting effect of X is called the total effect. The 
total effect of a variable X on a response Y is the effect calculated with all regressor variables 
prior to X controlled and all regressor variables causally posterior to X not controlled. For a 
given causal ordering the total effect is the effect with the clearest substantive interpretation. 
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The rational is that changes in the distribution of X will not affect variables prior to X in the 
chain, but will affect variables posterior to X. 

In addition to calculating the total effect, it is also possible to assess the extent to which the 
effect operates through changes in the intervening variables Xa in the causal chain. If the 
variables Xa are controlled, as well as Xb, we obtain the so-called direct effect of X on the 
response. The difference between the total effect and the direct effect is called the indirect 
effect of X on Y through Xa and represents the effect of X on Y operating through changes in 
the distribution of Xa. The most developed form of these decompositions occurs in the tech
nique of recursive path analysis, which is described in another technical bulletin (Kendall and 
O'Muircheartaigh, 1977). 

6.3 Examples 

If a predominant direction of causation can be established, then the total effects of variables 
can be calculated for this ordering. In addition, the total effects can be decomposed into direct 
and indirect components if this the decomposition is of substantive interest. The following 
examples illustrate the method. 

Example 1: Xi = Respondent's age, X2 = Education, X3 = Age at marriage, Y = Parity. One 
plausible causal ordering is: 

Age ~ Education ~ Age at marriage --'> Parity 

Age is a cohort marker and fully exogenous to the other variables. To the extent that children 
are born after marriage, the response variable Parity does not affect the respondent's history up 
to marriage and hence can be considered causally posterior to education and age at marriage. 
The placement of education prior to age at marriage is less certain, and in some populations 
might reflect a predominant direction of causation. Although in some cases a respondent may 
terminate her education to get married, for the most part education has the effect of delaying 
age at marriage, and this is reflected in the chosen direction of causation between these vari
ables. Given the ordering, the total effect of age on parity is unadjusted, the total effect of 
education on parity is adjusted for age, and the total effect of age at marriage on parity is 
adjusted for age and age at marriage. In practice, the effect of education often calculated is the 
direct effect adjusted for age and age at marriage. One practical reason for this is that with an 
ever-married sample the total effect is biased because of selection effects. However, the direct 
effect does not take into account the indirect effect of education operating through changes in 
age at marriage. 

Example 2: X1 =Marital duration, X2 = Education, Y =Parity. Here the predominant causal 
ordering is: 

Duration ----;;. Education ___,. Parity 

However the causal relationship between duration and education is not clear, because marriage 
duration includes components of age and age at marriage which, according to the previous 
example, are respectively prior and posterior to education. The total effect of education on 
parity in this system is obtained by controlling marital duration. 

Example 3: Xi =Age, X2 =Age at marriage, X3 =Current use of contraception, X4 =Parity. 
Consider two causal orderings, with (a) Y = X4, i.e. parity, as response and (b) Y = X3, i.e. 
contraceptive use, as response: 

(a) Age ---+ Age at marriage --+- Contraceptive use ~ Parity 

(b) Age ___.. Age at marriage ~ Parity ~ Contraceptive use 

The causal ordering between contraceptive use and parity in (a) seems plausible, as one expects 
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that contraceptive use affects the number of live births a woman has. However, in practice the 
predominant causal ordering is more likely to be (b ), particularly in countries where family 
planning is of recent origin. That is, women with high parities are more likely to use contra
ception, and consequently parity is a major determinant of contraceptive use; although contra
ceptive use may have an inhibiting effect on parity, this effect is smaller in the initial stages of a 
family planning programme. The consequences of this circularity were noted in Section 6.1. 

Example 4: X 1 = Age, X2 = Age at marriage, X3 = Education, X4 = Desired family size, Y = 
Parity. Here the causal ordering is: 

Age ___., Education ~ Age at marriage --+ Desired family size --+ Parity 

seems plausible. However, in a real population the relationship between the last two variables is 
complicated to the extent that women tend to rationalize their stated desired family size on the 
basis of how many children they in fact have had. Thus, again, circular causation is a possibility 
which obscures the interpretation of the data. 

6.4 A Compromise Strategy 

As can be seen from the examples of the previous section, the principal difficulty of the pro
posed strategy is that in practice it is often hard to justify even an approximate causal ordering 
between the variables. Consequently a more flexible approach may be desirable, where the 
effects of a variable are calculated with a variety of controls. The extreme version of this 
strategy would be to calculate effects for all possible subsets of controls, but this soon produces 
an unpalatable amount of data. A compromise solution, which relies to some extent on a causal 
ordering but calculates a range of effects for each variable, has been adopted in two WFS 
Illustrative Analyses (Cleland, Llttle and Pitaktepsombati, 1979; Llttle and Perera, 1980). An 
ordering 

is decided on causal or substantive grounds. For each variable Xj, the unadjusted effect is cal
culated first. Then other variables are added in (K-1) steps, according to the ordering obtained 
by moving Xj to the beginning of the sequence. At each step the adjusted effects of Xj are cal
culated. The results of this strategy for a single variable are shown in Table 5 .6, and discussed in 
Section S.S. The output is still dependent on the choice of ordering, but the method does 
provide information on the effects of each variable with a variety of controls, and as such 
illuminates some of the consequences of association between the regressors which is the prin
cipal motivation of these methods. 
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TABLE Dl: Mean Number of Children Ever Born, by Marital Duration(MGP6) and by Level of 
Education (LVED). a) Means, b) Sample Sizes, c) Standard Deviations 

LVED 

No 1-5 6-9 10+ 
Schooling Years Years Years Row 

MGP6 (1) (2) (3) (4) Total 

0-4 .96a) .88 .95 .92 .92 
(1) 112 b) 376 442 351 1280 

.84c) .76 .78 .77 .78 

5-9 
2.54 2.46 2.39 2.39 2.44 

(2) 
172 442 362 255 1231 
1.24 1.28 1.21 1.19 1.23 

10-14 3.87 3.91 3.73 3.14 3.76 

(3) 197 482 293 145 1118 
1.67 1.72 1.49 1.47 1.64 

15-19 5.13 4.97 4.61 4.13 4.84 

(4) 239 461 262 95 1057 
2.35 2.34 2.18 2.10 2.30 

20-24 
6.22 5.87 5.22 4.47 5.79 

(5) 
292 377 184 40 893 
2.62 2.38 2.64 2.11 2.54 

25 + 
6.92 6.55 6.23 5.97 6.65 
501 548 161 22 1231 

(6) 
3.16 2.99 2.70 1.98 3.02 

Total 5.17 4.24 3.26 2.30 3.94 
1512 2686 1704 908 6810 
3.10 2.85 2.47 1.85 2.86 

Standardized Means 4.14 3.98 3.75 3.43 3.88 

Source: Special Tabulation Sri Lanka Fertility Survey 1975. 
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TABLE D2: Mean Number of Children Ever Born, by Age (AGPS), by Age at First Marriage 
(AMGP), and by Level of Education (LVED). a) Means and b) Sample Sizes 

LVED= 1 NO SCHOOLING 

AMGP 

<15 15-19 20-24 25+ Row 
AGP5 (1) (2) (3) (4) Total 

15-24 2.83 a) 1.65 .64 .00 1.75 
(1) 29 b) 101 19 0 149 

25-29 4.39 3.26 1.91 .57 3.05 
(2) 43 103 55 7 207 

30-34 5.32 4.88 3.41. 2.30 4.66 
(3) 67 101 38 9 215 

35-39 6.84 6.01 4.68 1.90 5.96 
(4) 111 139 41 13 304 

40-49 7.34 6.77 5.86 2.95 6.45 
(5) 173 293 121 51 637 

Total 6.28 5.18 4.18 2.50 5.17 
423 736 274 79 1512 

LVED = 2 1TO5 YEARS 

AMGP 

<15 15-19 20-24 25+ Row 
AGP5 (1) (2) (3) (4) Total 

15-24 2.93 1.41 .56 .00 1.49 
(1) 66 311 78 0 456 

25-29 4.56 3.30 1.90 .45 3.00 
(2) 94 213 134 25 466 

30-34 5.99 4.61 3.43 1.66 4.30 
(3) 80 258 105 48 490 

35-39 6.31 5.86 4.50 2.64 5.23 
(4) 73 197 112 47 430 

40-49 6.85 6.46 5.30 2.82 5.88 
(5) 132 425 202 85 844 

Total 5.54 4.44 ' 3.54 2.22 4.24 
446 1404 632 204 2686 
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TABLE D2: Mean Number of Children Ever Born, by Age, by Age at First Marriage, and by 
Level of Education (cont'd.) 

LVED = 3 6-9 YEARS 

AMGP 

<15 15-19 20-24 25+ Row 
AGP5 (1) (2) (3) (4) Total 

15-24 2.62 1.53 .69 .00 1.31 
(1) 14 234 115 0 364 

25-29 3.97 3.47 1.65 .68 2.31 
(2) 28 125 184 43 380 

30-34 4.52 4.34 3.23 1.55 3.43 
(3) 26 126 82 68 302 

35-39 5.82 5.66 4.28 2.26 4.46 
(4) 15 106 113 58 292 

40-49 6.74 6.09 5.03 3.11 5.08 
(5) 23 143 110 90 366 

Total 4.78 3.83 2.79 2.11 3.26 
106 735 604 259 1704 

LVED=4 10 OR MORE YEARS 

AMGP 

<15 15-19 20-24 25+ Row 
AGP5 (1) (2) (3) (4) Total 

15-24 1.58 1.24 .64 .00 .89 
(1) 5 42 73 0 119 

25-29 .00 3.15 1.56 .72 1.55 
(2) 0 33 147 63 242 

30-34 4.71 4.11 2.86 1.64 2.33 
(3) 2 17 80 115 214 

35-39 .00 5.42 3.48 2.29 2.95 
(4) 0 13 65 100 177 

40-49 5.55 5.88 4.59 2.91 3.79 
(5) 2 12 56 84 155 

Total 3.35 3.14 2.35 1.96 2.30 
9 117 421 361 908 

Source: Special Tabulation, Sri Lanka Fertility Survey 1975. 
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TABLE D3: Mean Number of Children Ever Born,* by Marital Duration (MGP5) and by Level 
of Education (LVED). a) Means, b) Sample Sizes 

LVED 

·Lower Upper 
Secondary Secondary Higher Row 

MGP5 (1) (2) (3) Total 

0-4 .81 a) .58 .35 .64 
(1) 365 b) 338 147 850 

5-9 1.71 1.50 1.36 1.60 
(2) 555 371 121 1047 

10-14 2.27 2.07 2.08 2.20 
(3) 560 272 95 927 

15-19 2.56 2.40 2.27 2.50 
(4) 651 213 84 948 

20-24 2.75 2.32 2.79 2.67 
(5) 572 151 56 779 

25 + 2.83 2.44 2.45 2.76 
(6) 391 68 11 470 

Column Total 2.22 1.66 1.53 1.99 
3094 1413 514 5021 

Source: Special Tabulation from U.K. Family Formation Survey, 1976. See Dunnell (1976). 
*Note that the sample base is restricted to ever-married women. Consequently the last two marriage groups 
are biased towards women who marry early. 
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TABLE 04: Means of Parity Divided by Marital Duration (PBYD), Weighted by Marital 
Duration, Cross-Classified by Marital Duration (MGP6) and by Level of Education (LVED) 
a) Means, b) Years of Exposure, c) Standard Deviations 

LVED 

No 1-5 6-9 10+ 
Schooling Years Years Years Row 

MGP6 (1) (2) (3) (4) Total 
a) 

3.58 4.08 4.18 3.90 0-4 3.53 b) 

(1) 303 897 1028 765 2993 
2.26 c) 2.19 2.15 2.26 2.22 

5-9 3.42 3.38 3.33 3.32 3.36 

(2) 1274 3219 2596 1837 8927 
1.63 1.64 1.52 1.50 1.58 

10-14 3.15 3.12 2.99 2.55 3.02 

(3) 2419 6038 3660 1784 13901 
1.29 1.35 1.18 1.20 1.29 

15-19 2.95 2.87 2.67 2.41 2.80 

(4) 4153 7969 4513 1633 18268 
1.30 1.34 1.20 1.19 1.29 

20-24 2.77 2.61 2.35 2.00 2.58 

(5) 6562 8467 4093 899 20020 
1.14 1.06 1.19 .92 1.13 

25 + 2.36 2.27 2.16 2.16 2.29 

(6) 14700 15805 4634 598 35738 
1.08 1.04 .94 .76 1.04 

Total 2.66 2.69 2.70 2.78 2.69 
29411 42395 20525 7515 99846 

1.24 1.30 1.35 1.51 1.31 

Source: Special Tabulation, Sri Lanka Fertility Survey 197 5. 
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